Author:
Salari Samira,Sharifi Iraj,Keyhani Ali Reza,Ghasemi Nejad Almani Pooya
Abstract
Abstract
Background
Leishmaniasis is a serious health problem in some parts of the world. In spite of the many known leishmaniasis control measures, the disease has continued to increase in endemic areas, and no effective vaccine has been discovered.
Methods
In this study, Leishmania tarentulae was used as a living factory for the production of two LACK and KMP11 immunogenic antigens in the mice body, and safety profiles were investigated. The sequences of the KMP11 and LACK L. major antigens were synthesized in the pLEXSY-neo 2.1 plasmid and cloned into E. coli strain Top10, and after being linearized with the SwaI enzyme, they were transfected into the genome of L. tarentolae. The L. tarentolae-LACK/KMP11/EGFP in the stationary phase with CpG ODN as an adjuvant was used for vaccination in BALB/c mice. Vaccination was performed into the left footpad. Three weeks later, the booster was injected in the same manner. To examine the effectiveness of the injected vaccine, pathogenic L. major (MRHO/IR/75/ER) was injected into the right footpad of all mice three weeks following the booster vaccination. In order to assess humoral immunity, the levels of IgG1, and IgG2a antibodies before and 6 weeks after the challenge were studied in the groups. In addition, in order to investigate cellular immunity in the groups, the study measured IFN-γ, IL-5, TNF-α, IL-6 and IL-17 cytokines before, 3 weeks and 8 weeks after the challenge, and also the parasite load in the lymph node with real-time PCR.
Results
The lowest level of the parasitic load was observed in the G1 group (mice vaccinated with L. tarentolae-LACK/KMP11/EGFP with CpG) in comparison with other groups (L. tarentolae-LACK/KMP11/EGFP +non-CpG (G2); L. tarentolae-EGFP + CpG (G3, control); L. tarentolae-EGFP + non-CpG (G4, control); and mice injected with PBS (G5, control). Moreover, the evaluation of immune response showed a delayed-type hypersensitivity towards Th1.
Conclusions
According to the results of this study, the live recombinant vaccine of L. tarentolae-LACK/KMP11/EGFP with the CpG adjuvant reduced the parasitic load and footpad induration in infected mice. The long-term effects of this vaccine can be evaluated in volunteers as a clinical trial in future planning.
Funder
National Institute for Medical Research Development
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference34 articles.
1. WHO. Surveillance of leishmaniasis in the WHO European Region, 2016 and Global leishmaniasis surveillance update, 1998–2016, vol. 40. Geneva: World Health Organization; 2018. p. 521–40.
2. Askari A, Sharifi I, Aflatoonian M, Babaei Z, Almani PGN, Mohammadi M, et al. A newly emerged focus of zoonotic cutaneous leishmaniasis in South-Western Iran. Microb Pathog. 2018;121:363–8.
3. Ramezany M, Sharifi I, Babaei Z, Ghasemi Nejad Almani P, Heshmatkhah A, Keyhani A, et al. Geographical distribution and molecular characterization for cutaneous leishmaniasis species by sequencing and phylogenetic analyses of kDNA and ITS1 loci markers in south-eastern Iran. Pathog Glob Health. 2018;112:132–41.
4. Almani PG, Sharifi I, Kazemi B, Babaei Z, Bandehpour M, Salari S, et al. The role of GlcNAc-PI-de-N-acetylase gene by gene knockout through homologous recombination and its consequences on survival, growth and infectivity of Leishmania major in in vitro and in vivo conditions. Acta Trop. 2016;154:63–72.
5. Almani PGN, Sharifi I, Kazemi B, Babaei Z, Bandehpour M, Salari S, et al. Designing and cloning molecular constructs to knock out N-acetylglucosamine phosphatidylinositol De-N-acetylase (GPI12) gene in Leishmania major (MRHO/IR/75/ER). Iran J Parasitol. 2016;11:448.