A novel optical sensor system for the automatic classification of mosquitoes by genus and sex with high levels of accuracy

Author:

González-Pérez María I.,Faulhaber Bastian,Williams Mark,Brosa Josep,Aranda Carles,Pujol Nuria,Verdún Marta,Villalonga Pancraç,Encarnação Joao,Busquets Núria,Talavera Sandra

Abstract

Abstract Background Every year, more than 700,000 people die from vector-borne diseases, mainly transmitted by mosquitoes. Vector surveillance plays a major role in the control of these diseases and requires accurate and rapid taxonomical identification. New approaches to mosquito surveillance include the use of acoustic and optical sensors in combination with machine learning techniques to provide an automatic classification of mosquitoes based on their flight characteristics, including wingbeat frequency. The development and application of these methods could enable the remote monitoring of mosquito populations in the field, which could lead to significant improvements in vector surveillance. Methods A novel optical sensor prototype coupled to a commercial mosquito trap was tested in laboratory conditions for the automatic classification of mosquitoes by genus and sex. Recordings of > 4300 laboratory-reared mosquitoes of Aedes and Culex genera were made using the sensor. The chosen genera include mosquito species that have a major impact on public health in many parts of the world. Five features were extracted from each recording to form balanced datasets and used for the training and evaluation of five different machine learning algorithms to achieve the best model for mosquito classification. Results The best accuracy results achieved using machine learning were: 94.2% for genus classification, 99.4% for sex classification of Aedes, and 100% for sex classification of Culex. The best algorithms and features were deep neural network with spectrogram for genus classification and gradient boosting with Mel Frequency Cepstrum Coefficients among others for sex classification of either genus. Conclusions To our knowledge, this is the first time that a sensor coupled to a standard mosquito suction trap has provided automatic classification of mosquito genus and sex with high accuracy using a large number of unique samples with class balance. This system represents an improvement of the state of the art in mosquito surveillance and encourages future use of the sensor for remote, real-time characterization of mosquito populations. Graphical abstract

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference61 articles.

1. World Health Organization (WHO). Vector-borne diseases fact sheet. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 20 May 2021.

2. Rossati A. Global warming and its health impact. Int J Occup Environ Med. 2017;8:7–20.

3. Khasnis AA, Nettleman MD. Global warming and infectious disease. Arch Med Res. 2005;36:689–96.

4. World Health Organization (WHO). A global brief on vector-borne diseases. https://www.who.int. Accessed 20 May 2021.

5. Schaffner F, Versteirt V, Medlock J. Guidelines for the surveillance of native mosquitoes in Europe. https://www.ecdc.europa.eu. Accessed 20 May 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3