Using body size as an indicator for age structure in field populations of Aedes aegypti (Diptera: Culicidae)

Author:

Gutiérrez Eileen H. Jeffrey,Riehle M. A.,Walker K. R.,Ernst K. C.,Davidowitz G.

Abstract

Abstract Background The Aedesaegypti mosquito is a vector of several viruses including dengue, chikungunya, zika, and yellow fever. Vector surveillance and control are the primary methods used for the control and prevention of disease transmission; however, public health institutions largely rely on measures of population abundance as a trigger for initiating control activities. Previous research found evidence that at the northern edge of Ae.aegypti’s geographic range, survival, rather than abundance, is likely to be the factor limiting disease transmission. In this study, we sought to test the utility of using body size as an entomological index to surveil changes in the age structure of field-collected female Aedesaegypti. Methods We collected female Ae.aegypti mosquitoes using BG sentinel traps in three cities at the northern edge of their geographic range. Collections took place during their active season over the course of 3 years. Female wing size was measured as an estimate of body size, and reproductive status was characterized by examining ovary tracheation. Chronological age was determined by measuring transcript abundance of an age-dependent gene. These data were then tested with female abundance at each site and weather data from the estimated larval development period and adulthood (1 week prior to capture). Two sources of weather data were tested to determine which was more appropriate for evaluating impacts on mosquito physiology. All variables were then used to parameterize structural equation models to predict age. Results In comparing city-specific NOAA weather data and site-specific data from HOBO remote temperature and humidity loggers, we found that HOBO data were more tightly associated with body size. This information is useful for justifying the cost of more precise weather monitoring when studying intra-population heterogeneity of eco-physiological factors. We found that body size itself was not significantly associated with age. Of all the variables measured, we found that best fitting model for age included temperature during development, body size, female abundance, and relative humidity in the 1 week prior to capture . The strength of models improved drastically when testing one city at a time, with Hermosillo (the only study city with seasonal dengue transmission) having the best fitting model for age. Despite our finding that there was a bias in the body size of mosquitoes collected alive from the BG sentinel traps that favored large females, there was still sufficient variation in the size of females collected alive to show that inclusion of this entomological indicator improved the predictive capacity of our models. Conclusions Inclusion of body size data increased the strength of weather-based models for age. Importantly, we found that variation in age was greater within cities than between cities, suggesting that modeling of age must be made on a city-by-city basis. These results contribute to efforts to use weather forecasts to predict changes in the probability of disease transmission by mosquito vectors. Graphical abstract

Funder

Labex DRIIHM

NIH-NIAID

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3