Abstract
Abstract
Background
Wolbachia pipientis are bacterial endosymbionts of arthropods currently being implemented as biocontrol agents to reduce the global burden of arboviral diseases. Some strains of Wolbachia, when introduced into Aedes aegypti mosquitoes, reduce or block the replication of RNA viruses pathogenic to humans. The wAlbB strain of Wolbachia was originally isolated from Aedes albopictus, and when transinfected into Ae. aegypti, persists in mosquitoes under high temperature conditions longer than other strains. The utility of wAlbB to block a broad spectrum of RNA viruses has received limited attention. Here we test the ability of wAlbB to reduce or block the replication of a range of Flavivirus and Alphavirus species in cell culture.
Methods
The C6/36 mosquito cell line was stably infected with the wAlbB strain using the shell-vial technique. The replication of dengue, West Nile and three strains of Zika (genus Flavivirus), and Ross River, Barmah Forest and Sindbis (genus Alphavirus) viruses was compared in wAlbB-infected cells with Wolbachia-free controls. Infectious virus titres were determined using either immunofocus or plaque assays. A general linear model was used to test for significant differences in replication between flaviviruses and alphaviruses.
Results
Titres of all viruses were significantly reduced in cell cultures infected with wAlbB versus Wolbachia-free controls. The magnitude of reduction in virus yields varied among virus species and, within species, also among the strains utilized.
Conclusion
Our results suggest that wAlbB infection of arthropods could be used to reduce transmission of a wide range of pathogenic RNA viruses.
Funder
National Health and Medical Research Council (NHMRC) of Australia
Queensland University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献