Penguins are competent hosts of Haemoproteus parasites: the first detection of gametocytes, with molecular characterization of Haemoproteus larae

Author:

Inumaru Mizue,Aratani Shiori,Shimizu Misa,Yamamoto Mineka,Sato Yukita,Murata Koichi,Valkiūnas Gediminas

Abstract

Abstract Background The majority of penguins (Sphenisciformes) have evolved in areas with weak or absent transmission of haemosporidian parasites and are usually naïve to avian haemosporidian infections. Plasmodium parasites are transmitted by mosquitoes, and lethal avian malaria has been often reported in captive penguins in many countries. The related haemosporidian parasites belonging to Haemoproteus and Leucocytozoon have also been detected in penguins but less often than Plasmodium infections. The majority of Haemoproteus infection reports in penguins are based solely on PCR-based diagnostics. It remains unclear if haemoproteids can complete their life-cycle and produce infective stages (gametocytes) in penguins or whether these infections are abortive in penguins, and thus dead ends for transmission. In other words, it remains unknown if penguins are competent hosts for Haemoproteus parasites, which cause disease in non-adapted birds. Methods Two captive African penguins (Spheniscus demersus) and two Magellanic penguins (S. magellanicus) were found to be positive for Haemoproteus infection in two open-air aquariums in Japan, and the parasites were investigated using both PCR-based testing and microscopical examination of blood films. Samples from a black-tailed gull (Larus crassirostris) and previously tested gulls were used for comparison. Results The lineage hSPMAG12 was detected, and gametocytes of Haemoproteus sp. were seen in the examined penguins and gull. Observed gametocytes were indistinguishable from those of Haemoproteus larae, which naturally parasitize birds of the genus Larus (Laridae). The detected sequence information and Bayesian phylogenetic analysis supported this conclusion. Additionally, morphologically similar gametocytes and closely related DNA sequences were also found in other gull species in Japan. Phylogenetic analysis based on partial cytb sequences placed the lineage hSPMAG12 of H. larae within the clade of avian haemoproteids which belong to the subgenus Parahaemoproteus, indicating that Culicoides biting midges likely transmit the parasites between penguins and gulls. Conclusions This study shows that some species of Haemoproteus parasites complete their development and produce gametocytes in penguins, which may be source of infection for biting midges transmitting haemoproteosis. To prevent haemosporidiosis in zoos, we call for control not only of mosquitoes, but also biting midges.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3