Phylogenetics, patterns of genetic variation and population dynamics of Trypanosoma terrestris support both coevolution and ecological host-fitting as processes driving trypanosome evolution

Author:

Pérez Sergio D.,Grummer Jared A.,Fernandes-Santos Renata C.,José Caroline Testa,Medici Emília Patrícia,Marcili Arlei

Abstract

Abstract Background A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown. Methods To test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes. Results We made inferences of T. terrestris population structure at three possible sources of genetic variation: geography, tapir hosts and ‘putative’ vectors. We found evidence of a bottleneck affecting the contemporary patterns of parasite genetic structure, resulting in little genetic diversity and no evidence of genetic structure among hosts or biomes. Despite this, a strongly divergent haplotype was recorded at a microgeographical scale in the landscape of Nhecolândia in the Pantanal. However, although tapirs are promoting the dispersion of the parasites through the landscape, neither geographical barriers nor tapir hosts were involved in the isolation of this haplotype. Taken together, these findings suggest that either host-switching promoted by putative vectors or declining tapir population densities are influencing the current parasite population dynamics and genetic structure. Similarly, phylogenetic analyses revealed that T. terrestris is strongly linked to the evolutionary history of its perissodactyl hosts, suggesting a coevolving scenario between Perissodactyla and their trypanosomes. Additionally, T. terrestris and T. grayi are closely related, further indicating that host-switching is a common feature promoting trypanosome evolution. Conclusions This study provides two lines of evidence, both micro- and macroevolutionary, suggesting that both host-switching by ecological fitting and coevolution are two important and non-mutually-exclusive processes driving the evolution of trypanosomes. In line with other parasite systems, our results support that even in the face of host specialization and coevolution, host-switching may be common and is an important determinant of parasite diversification.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3