Phenotypic insecticide resistance status of the Culex pipiens complex: a European perspective

Author:

Vereecken Stien,Vanslembrouck Adwine,Kramer Isabelle Marie,Müller Ruth

Abstract

Abstract Background The common house mosquito Culex pipiens is known to be a major vector for West Nile virus. In order to decrease risks of West Nile virus outbreaks in Europe, insecticides and the bio-larvicide Bacillus thuringiensis israelensis (Bti) are commonly used for vector control. Alarmingly, insecticide resistance has been reported in Cx. pipiens populations from Southern Europe and several countries neighbouring Europe. For Central and Northern Europe, however, the phenotypic insecticide resistance status of Cx. pipiens has not yet been investigated. Methods A literature review was performed to assess the geographical distribution of insecticide resistance in Cx. pipiens. To fill the gap of knowledge for Central and Northern Europe, WHO susceptibility tests with permethrin, deltamethrin, malathion, bendiocarb and DDT and a larval toxicity test with Bti were performed with a Cx. pipiens population from Belgium, a country in Central Europe. Results This research provides the first evidence of widespread phenotypic insecticide resistance in Cx. pipiens. In general, Cx. pipiens developed resistance against multiple insecticides in several countries. Another Cx. pipiens population from Belgium was tested and showed insecticide resistance against deltamethrin, permethrin, DDT and possibly against bendiocarb. The bio-larvicide Bti caused lower mortality than reported for other Cx. pipiens populations in the literature. Conclusions These results indicate the urgent need for insecticide resistance monitoring against commonly used adulticides and larvicides in Europe, for the translation of knowledge gained regarding the limited efficiency and availability of insecticide into EU legislation and the need for innovative non-chemical vector control tools in order to counter the widespread insecticide resistance in Culex populations. Graphical abstract

Funder

BiodivERsA3 ERA-Net COFUND program: DiMoC project

BIOZ project

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference58 articles.

1. European Centre for Disease Prevention and Control: Culex pipiens—factsheet for experts. 2020. https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/facts/mosquito-factsheets/culex-pipiens-factsheet-experts. Accessed 31 July 2022.

2. European Centre for Disease Prevention and Control: West Nile virus infection—annual epidemiological report for 2018. European Centre for Disease Prevention and Control; 2019.

3. Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, et al. Emerging trends in the epidemiology of West Nile and Usutu virus infections in Southern Europe. Front Vet Sci. 2019. https://doi.org/10.3389/fvets.2019.00437.

4. Clé M, Beck C, Salinas S, Lecollinet S, Gutierrez S, Van de Perre P, et al. Usutu virus: a new threat? Epidemiol Infect. 2019;147:e232.

5. Mellor PS. Replication of arboviruses in insect vectors. J Comp Pathol. 2000;123:231–47.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3