The bench-top accuracy of the VerteTrack spinal stiffness assessment device

Author:

Young AnikaORCID,Swain Michael S.,Kawchuk Gregory N.,Wong Arnold Y. L.,Downie Aron S.

Abstract

Abstract Background The assessment of spinal stiffness by manual palpation in clinical settings has demonstrated both poor accuracy and reliability. More recently, mechanical methods for assessment of spinal stiffness have demonstrated superior accuracy and reliability. However, mechanical methods of spinal stiffness assessment can be expensive, time consuming and/or unsuited to clinical practice. While a new device has been designed to address these issues (VerteTrack), its benchtop performance remains unknown. Aim To measure the bench-top performance of VerteTrack. Methods A series of laboratory-based experiments were conducted in February 2018 to investigate the accuracy (precision and bias) of load and displacement measurements obtained by VerteTrack and then were compared against an appropriate reference standard. Measurements of both multiple-level continuous assessment (multiple spinal levels measured), and single-level assessment (single spinal level measured) were performed on a viscoelastic foam medium (AIREX® balance beam, Switzerland) and the resulting stiffness calculated. Results VerteTrack demonstrated high precision at all loads and displacements. There was minimal systematic measurement bias identified for applied versus reference load (mean bias = − 0.123 N; 95%CI − 0.182 to 0.428 N, p < .001), and no systematic measurement bias for measured versus reference displacement (mean difference = 0.02 mm; 95%CI − 0.09 to 0.14 mm, p < .001). The magnitude of stiffness obtained during multiple-level continuous assessment was on average 0.25 N/mm (2.79%) less than that for single-level assessment (95%CI − 0.67 to 0.17 N/mm, p < .001). Conclusions VerteTrack demonstrated high accuracy (high precision, low bias) under bench-top conditions. The difference in stiffness found between multiple versus single spinal levels should be considered in the research context, but is unlikely to be clinically relevant. The results of this study demonstrate that VerteTrack may be suitable for both single and multi-level spinal stiffness measurements in-vivo.

Funder

Australian Chiropractic Association

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Physical Therapy, Sports Therapy and Rehabilitation,Chiropractics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3