Decellularization and enzymatic preconditioning of bovine uterus for improved recellularization

Author:

Sehic Edina,de Miguel-Gómez Lucía,Thorén Emy,Sameus Johan,Bäckdahl Henrik,Oltean Mihai,Brännström Mats,Hellström MatsORCID

Abstract

Abstract Background Uterus tissue engineering aims to repair a dysfunctional uterus that causes infertility, e.g., after significant scarring from benign or malign resection procedures. Decellularized uterine tissue provided regenerative support in several animal models as a biocompatible natural extracellular matrix (ECM) derived scaffold after uterine damage. However, variations in decellularization protocols and species used limit conclusive evidence and translational progress. Hence, a species-independent decellularization protocol could facilitate preclinical research. Therefore, we investigated if our developed sheep uterus decellularization protocol was species-independent and effective for the significantly larger bovine uterus. We further assessed if there were any negative post transplantation immunological consequences from the metalloproteinases 2 and 9 (MMP 2, MMP 9) treatment that was used as a preconditioning treatment to significantly improve scaffold recellularization after decellularization. Methods Bovine uterus was decellularized using sodium deoxycholate, and the remaining ECM was quantitatively assessed for DNA, protein, and ECM components. The morphology and physical attributes were examined by immunohistochemistry, electron microscopy, and mechanical tests. Scaffold biocompatibility, bioactivity, and angiogenic properties were assessed with the chorioallantoic membrane assay (CAM) and the immune response following transplantation of MMP treated scaffolds was compared with untreated scaffolds in a rat model. The in vitro recellularization efficiency of the scaffolds was also assessed. Results The decellularization protocol was effective for bovine uterus. The MMP treatment did not negatively affect scaffold immunogenicity in vivo, while the treatment potentiated mesenchymal stem cell recellularization in vitro. Furthermore, the decellularization protocol generated biocompatible and angiogenic uterine scaffolds. Conclusion Bovine uterus was successfully decellularized using previously established protocols. These results confirm earlier findings in the sheep model and further indicate that MMP treatment may be beneficial. The results further conclude the development of a species-independent, reproducible, and biocompatible scaffold generation protocol that can provide an important element for successful translational research.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Adlerbertska Research Foundation

Stiftelsen Handlanden Hjalmar Svenssons

Stiftelserna Wilhelm och Martina Lundgrens

University of Gothenburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3