Comparison of gene expression between human and mouse iPSC-derived cardiomyocytes for stem cell therapies of cardiovascular defects via bioinformatic analysis

Author:

Bellman Ryan,Chen Jishizhan,Chen Lidan,Nomikou Nikolitsa,Tsui Janice,Hamilton George,Song WenhuiORCID

Abstract

Abstract Background Preclinical studies have demonstrated the potential use of induced pluripotent stem cells (iPSCs) to treat cardiovascular disease (CVD). In vivo preclinical studies conducted on animal models (murine, porcine, guinea pig, etc.) have employed either syngeneic or human-derived iPSCs. However, no study has been carried out to investigate and report the key genetic differences between the human and animal-derived iPSCs. Our study analysed the gene expression profile and molecular pathway patterns underlying the differentiation of both human and mouse iPSCs to iPSC-cardiomyocytes (iPSC-CMs), and the differences between them via bioinformatic analysis. Method Data sets were downloaded from the Gene Expression Omnibus (GEO) database and included both human and mouse models, and the data for undifferentiated iPSCs and iPSC-CMs were isolated from each. Differentially expressed genes (DEGs) were screened and then analysed. The website g:Profiler was used to obtain the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Protein-protein interaction (PPI) networks of the DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. The subclusters were then extracted from the PPI network for further analysis. Results iPSC-derived cardiomyocytes expressed many genes related to vascular, endothelial, and smooth muscle repair in the human iPSC-CMs, and prevention of calcification in the mouse iPSC-CMs with clear differences in gene expression, which will affect how iPSCs act in research. Especially in the human iPSC-CMs, and also prevention of calcification processes in the mouse data. The identified differences in gene expression of iPSCs derived from the two species suggests that in vivo studies using mouse iPSC-CMs may not reflect those in humans. Conclusion The study provides new insights into the key genes related to the iPSCs, including genes related to angiogenesis, calcification, and striated muscle, endothelium, and bone formation. Moreover, the clear differences between both mouse and human-derived iPSCs have been identified, which could be used as new evidence and guidance for developing novel targeted therapy strategies to improve the therapeutic effects of iPSC treatment in cardiovascular defects.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3