Common double-lumen tube selection methods overestimate adequate tube sizes in individual patients – a 3D reconstruction study

Author:

Mihatsch Lorenz L.,Weiland Sandra,Helmberger Thomas,Friederich Patrick

Abstract

Abstract Background Appropriate selection of double-lumen tube sizes for one-lung ventilation is crucial to prevent airway damage. Current selection methods rely on demographic factors or 2D radiography. Prediction of left bronchial diameter is indispensable for choosing the adequate tube size. This prospective observational study investigates if current selection methods sufficiently predict individuals’ left bronchial diameters for DLT selection compared to the 3D reconstruction. Methods 100 patients necessitating thoracic surgery with one-lung ventilation and left-sided double-lumen tubes, ≥ 18 years of age, and a set of chest X-rays and 2D thorax CT scans for 3D reconstruction of the left main bronchus were included between 07/2021 and 06/2023. The cross-validated prediction error and the width of the 95%-prediction intervals of the 3D left main bronchial diameter utilizing linear prediction models were based on current selection methods. Results The mean bronchial diameter in 3D reconstruction was 13.6 ± 2.1 mm. The ranges of the 95%-prediction intervals for the bronchial diameter were 6.4 mm for demographic variables, 8.3 mm for the tracheal diameter from the X-ray, and 5.9 mm for bronchial diameter from the 2D-CT scans. Current methods violated the suggested ‘≥1 mm’ safety criterion in up to 7% (men) and 42% (women). Particularly, 2D radiography overestimated women’s left bronchial diameter. Current methods even allowed the selection of double-lumen tubes with bronchial tube sections greater than the bronchial diameter in women. Conclusions Neither demographic nor 2D-radiographic methods sufficiently account for the variability of the bronchial diameter. Wide 95%-prediction intervals for the bronchial diameter hamper accurate individual double-lumen tube selection. This increases women’s risk of bronchial damage, particularly if they have other predisposing factors. These patients may benefit from 3D reconstruction of the left main bronchus. Trial registration Not applicable.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3