Development of a novel tool: a nomogram for predicting in-hospital mortality of patients in intensive care unit after percutaneous coronary intervention

Author:

Yuan Miao,Ren Bin Cheng,Wang Yu,Ren Fuxian,Gao Dengfeng

Abstract

Abstract Backgrounds Increased risk of in-hospital mortality is critical to guide medical decisions and it played a central role in intensive care unit (ICU) with high risk of in-hospital mortality after primary percutaneous coronary intervention (PCI). At present,most predicting tools for in-hospital mortality after PCI were based on the results of coronary angiography, echocardiography, and laboratory results which are difficult to obtain at admission. The difficulty of using these tools limit their clinical application. This study aimed to develop a clinical prognostic nomogram to predict the in-hospital mortality of patients in ICU after PCI. Methods We extracted data from a public database named the Medical Information Mart for Intensive Care (MIMIC III). Adult patients with coronary artery stent insertion were included. They were divided into two groups according to the primary outcome (death in hospital or survive). All patients were randomly divided into training set and validation set randomly at a ratio of 6:4. Least absolute shrinkage and selection operator (LASSO) regression was performed in the training set to select optimal variables to predict the in-hospital mortality of patients in ICU after PCI. The multivariate logistical analysis was performed to develop a nomogram. Finally, the predictive efficiency of the nomogram was assessed by area under the receiver operating characteristic curve (AUROC),integrated discrimination improvement (IDI), and net reclassification improvement (NRI), and clinical net benefit was assessed by Decision curve analysis (DCA). Results A total of 2160 patients were recruited in this study. By using LASSO, 17 variables were finally included. We used multivariate logistic regression to construct a prediction model which was presented in the form of a nomogram. The calibration plot of the nomogram revealed good fit in the training set and validation set. Compared with the sequential organ failure assessment (SOFA) and scale for the assessment of positive symptoms II (SAPS II) scores, the nomogram exhibited better AUROC of 0.907 (95% confidence interval [CI] was 0.880-0.933, p <  0.001) and 0.901 (95% CI was 0.865-0.936, P <  0.001) in the training set and validation set, respectively. In addition, DCA of the nomogram showed that it could achieve good net benefit in the clinic. Conclusions A new nomogram was constructed, and it presented excellent performance in predicting in-hospital mortality of patients in ICU after PCI.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3