Abstract
Abstract
Background
The objectives of the present study was to evaluate the effect of fluid challenge (FC) on ventriculo-arterial (V-A) coupling, its determinants: arterial elastance and ventricular elastance, and ability to predict fluid responsiveness.
Methods
Thirty patients admitted to cardio-thoracic ICU in whom the physician decided to perform FC were included. Arterial pressure, cardiac output, arterial elastance, and ventricular elastance, were measured before and after FC with 500 ml of lactated Ringer’s solution. Fluid responders were defined as patients with more than a 15% increase in stroke volume. V-A coupling was evaluated by the arterial elastance to ventricular elastance ratio.
Results
Twenty-three (77%) of the 30 patients included in the study were fluid responders. Before FC, responders had higher arterial elastance and arterial elastance to ventricular elastance ratio. FC significantly increased mean arterial pressure, stroke volume and cardiac output, and significantly decreased systemic vascular resistance, arterial elastance and consequently the arterial elastance to ventricular elastance ratio. Changes in arterial elastance were correlated with changes in stroke volume, systemic vascular resistance, and arterial compliance. Baseline arterial elastance to ventricular elastance ratio over 1.4 predicted fluid responsiveness (area under the curve [95% confidence interval]: 0.84 [0.66–1]; p < 0.0001).
Conclusions
Fluid responsiveness patients had V-A coupling characterized by increase arterial elastance to ventricular elastance ratio, in relation to an increase arterial elastance. Fc improved the V-A coupling ratio by decreasing arterial elastance without altering ventricular elastance. Arterial elastance changes were related to those of systemic vascular resistance (continue component) and of arterial compliance (pulsatile component).
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine
Reference35 articles.
1. Guyton AC. Textbook of medical physiology. 5th ed. Philadelphia: W.B. Saunders; 1976.
2. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Phys. 1983;245:773–80.
3. Sagawa K, Suga H, Shoukas AA, et al. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977;40:748–53.
4. Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12:163–89.
5. Maurer MS, Sackner-Bernstein JD, El-Khoury Rumbarger L, Yushak M, King DL, Burkhoff D. Mechanisms underlying improvements in ejection fraction with Carvedilol in heart failure. Circ Heart Fail. 2009;2:189–96.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献