Anesthesia inhibited corticospinal excitability and attenuated the modulation of repetitive transcranial magnetic stimulation

Author:

Wang Xin,Wang Tengfei,Jin Jingna,Wang He,Li Ying,Liu Zhipeng,Yin Tao

Abstract

Abstract Background Lots of studies have measured motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) in anesthetized animals. However, in awake animals, the measurement of TMS-induced MEP is scarce as lack of sufficient restraint. So far, the explicit study of anesthesia effects on corticospinal excitability and repetitive TMS (rTMS) induced modulation is still lacking. This study aimed to: (1) measure TMS-induced MEP in both awake restrained and anesthetized rats, (2) investigate the effect of anesthesia on corticospinal excitability, and (3) on rTMS-induced modulation. Methods MEP of eighteen rats were measured under both wakefulness and anesthesia using flexible binding and surface electrodes. Peak-to-peak MEP amplitudes, resting motor threshold (RMT) and the slope of stimulus response (SR) were extracted to investigate anesthesia effects on corticospinal excitability. Thereafter, 5 or 10 Hz rTMS was applied with 600 pulses, and the increase in MEP amplitude and the decrease in RMT were used to quantify rTMS-induced modulation. Results The RMT in the awake condition was 44.6 ± 1.2% maximum output (MO), the peak-to-peak MEP amplitude was 404.6 ± 48.8 μV at 60% MO. Under anesthesia, higher RMT (55.6 ± 2.9% MO), lower peak-to-peak MEP amplitudes (258.6 ± 32.7 μV) and lower slope of SR indicated that the corticospinal excitability was suppressed. Moreover, under anesthesia, high-frequency rTMS still showed significant modulation of corticospinal excitability, but the modulation of MEP peak-to-peak amplitudes was weaker than that under wakefulness. Conclusions This study measured TMS-induced MEP in both awake and anesthetized rats, and provided explicit evidence for the inhibitory effects of anesthesia on corticospinal excitability and on high-frequency rTMS-induced modulation of MEP.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3