Development and validation of a screening method for difficult tracheal intubation based on geometric simulation and computer technology

Author:

Yu Yue,Cao Jingjing,Tang Xinyuan,Dong Zhiyuan,Xu Jianling,Wang Bin,Cheng Pingping,Wang Mingfang,Wu Yue,Yao Weidong,Jiang Xiaogan

Abstract

Abstract Background The anatomical characteristics of difficult airways can be analysed geometrically. This study aims to develop and validate a geometry-assisted difficult airway screening method (GADAS method) for difficult tracheal intubation. Methods In the GADAS method, a geometric simulated model was established based on computer graphics. According to the law of deformation of the upper airway on laryngoscopy, the expected visibility of the glottis was calculated to simulate the real visibility on laryngoscopy. Validation of the new method: Approved by the Ethics Committee of Yijishan Hospital of Wannan Medical College. Adult patients who needed tracheal intubation under general anaesthesia for elective surgery were enrolled. The data of patients were input into the computer software to calculate the expected visibility of the glottis. The results of tracheal intubation were recorded by anaesthesiologists. The primary observation outcome was the screening performance of the expected visibility of the glottis for difficult tracheal intubation. Results The geometric model and software of the GADAS method were successfully developed and are available for use. We successfully observed 2068 patients, of whom 56 patients had difficult intubation. The area under the receiver operating characteristic curve of low expected glottis visibility for predicting difficult laryngoscopy was 0.96 (95% confidence interval [CI]: 0.95–0.96). The sensitivity and specificity were 89.3% (95% CI: 78.1-96.0%) and 94.3% (95% CI: 93.2%-95.3), respectively. Conclusions It is feasible to screen difficult-airway patients by applying computer techniques to simulate geometric changes in the upper airway.

Funder

Science and Technology Department of Anhui Province

Natural Science Major Research Project of Anhui Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3