Ropivacaine inhibits wound healing by suppressing the proliferation and migration of keratinocytes via the PI3K/AKT/mTOR Pathway

Author:

Wu Xiaoyang,Sun Quanyu,He Simeng,Wu Ya,Du Shihan,Gong Lirong,Yu Jianbo,Guo Haifeng

Abstract

Abstract Background After surgery, millions of people suffer from delayed healing or wound dehiscence with subsequent severe complications, even death. Previous studies have reported that ropivacaine exhibits anti-proliferative and anti-migratory activities on numerous cells. Whether ropivacaine is able to influence the proliferation and migration of keratinocytes is still unclear. This study aimed to investigate the effect of ropivacaine on keratinocytes and its underlying molecular mechanism. Methods Adult male Sprague–Dawley rats were allocated to establish wound healing models with or without 0.75% ropivacaine treatment and assessed the epidermal thickness by HE staining. HaCaT cells were cultured to evaluate the effect of ropivacaine on wound healing. The cell proliferation, apoptosis status and migration were detected in vitro. Moreover, western blotting was used to examine expression to with PI3K/AKT/mTOR signaling pathways for molecular studies and the changes in inflammatory factors (IL-6, IL-10, TNF-α) were detected by ELISA. Results In the present study, we found that ropivacaine delayed wound closure in vivo. In vitro experiments, it was demonstrated that ropivacaine significantly inhibited the proliferation and migration of HaCaT cells via the suppression of PI3K/AKT/mTOR signaling pathway. Activation of PI3K/AKT/mTOR signaling pathway reversed the effects of ropivacaine on the proliferation and migration of HaCaT cells. Furthermore, ropivacaine contributed to the release of pro-inflammatory cytokines (IL-6 and TNF-α) and inhibited the secretion of anti-inflammatory cytokines of keratinocytes (IL-10). Conclusions Our research demonstrated that ropivacaine treatment showed a more decreased wound closure rate. Mechanistically, we found that ropivacaine suppressed the proliferation and migration of keratinocytes and altered the expression of cytokines by inhibiting PI3K/AKT/mTOR pathway.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3