Abstract
Abstract
Background
This study used an epidural anesthesia practice kit (model) to evaluate the accuracy of epidural anesthesia using standard techniques (blind) and augmented/mixed reality technology and whether visualization using augmented/mixed reality technology would facilitate epidural anesthesia.
Methods
This study was conducted at the Yamagata University Hospital (Yamagata, Japan) between February and June 2022. Thirty medical students with no experience in epidural anesthesia were randomly divided into augmented reality (-), augmented reality (+), and semi-augmented reality groups, with 10 students in each group. Epidural anesthesia was performed using the paramedian approach with an epidural anesthesia practice kit. The augmented reality (-) group performed epidural anesthesia without HoloLens2Ⓡ and the augmented reality (+) group with HoloLens2Ⓡ. The semi-augmented reality group performed epidural anesthesia without HoloLens2Ⓡ after 30 s of image construction of the spine using HoloLens2Ⓡ. The epidural space puncture point distance between the ideal insertion needle and participant’s insertion needle was compared.
Results
Four medical students in the augmented reality (-), zero in the augmented reality (+), and one in the semi-augmented reality groups failed to insert the needle into the epidural space. The epidural space puncture point distance for the augmented reality (-), augmented reality (+), and semi-augmented reality groups were 8.7 (5.7–14.3) mm, 3.5 (1.8–8.0) mm (P = 0.017), and 4.9 (3.2–5.9) mm (P = 0.027), respectively; a significant difference was observed between the two groups.
Conclusions
Augmented/mixed reality technology has the potential to contribute significantly to the improvement of epidural anesthesia techniques.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献