Preparation of Dräger Atlan A350 and General Electric Healthcare Carestation 650 anesthesia workstations for malignant hyperthermia susceptible patients

Author:

Heiderich SebastianORCID,Thoben Christian,Dennhardt NilsORCID,Krauß Terence,Sümpelmann RobertORCID,Zimmermann Stefan,Reitz Michael,Rüffert Henrik

Abstract

Abstract Background Patients at risk of malignant hyperthermia need trigger-free anesthesia. Therefore, anesthesia machines prepared for safe use in predisposed patients should be free of volatile anesthetics. The washout time depends on the composition of rubber and plastic in the anesthesia machine. Therefore, new anesthesia machines should be evaluated regarding the safe preparation for trigger-free anesthesia. This study investigates wash out procedures of volatile anesthetics for two new anesthetic workstations: Dräger Atlan A350 and General Electric Healthcare (GE) Carestation 650 and compare it with preparation using activated charcoal filters (ACF). Methods A Dräger Atlan and a Carestation 650 were contaminated with 4% sevoflurane for 90 min. The machines were decontaminated with method (M1): using ACF, method 2 (M2): a wash out method that included exchange of internal parts, breathing circuits and soda lime canister followed by ventilating a test lung using a preliminary protocol provided by Dräger or method 3 (M3): a universal wash out instruction of GE, method 4 (M4): M3 plus exchange of breathing system and bellows. Decontamination was followed by a simulated trigger-free ventilation. All experiments were repeated with 8% desflurane contaminated machines. Volatile anesthetics were detected with a closed gas loop high-resolution ion mobility spectrometer with gas chromatographic pre-separation attached to the bacterial filter of the breathing circuits. Primary outcome was time until < 5 ppm of volatile anesthetics and total preparation time. Results Time to < 5 ppm for the Atlan was 17 min (desflurane) and 50 min (sevoflurane), wash out continued for a total of 60 min according to protocol resulting in a total preparation time of 96-122 min. The Carestation needed 66 min (desflurane) and 24 min (sevoflurane) which could be abbreviated to 24 min (desflurane) if breathing system and bellows were changed. Total preparation time was 30-73 min. When using active charcoal filters time to < 5 ppm was 0 min for both machines, and total preparation time < 5 min. Conclusion Both wash out protocols resulted in a significant reduction of trace gas concentrations. However, due to the complexity of the protocols and prolonged total preparation time, feasibility in clinical practice remains questionable. Especially when time is limited preparation of the anesthetic machines using ACF remain superior.

Funder

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3