miR-424 inhibits apoptosis and inflammatory responses induced by sevoflurane through TLR4/MyD88/NF-κB pathway

Author:

Li Zeyu,Wang Tao,Yu Yonghao

Abstract

Abstract Background Side effects of sevoflurane in anterograde and retrograde memory have been widely reported. However, there is no convincing evidence that sevoflurane directly causes the development of neurotoxicity. miR-424 has the potential to regulate the neurotoxicity caused by isoflurane anesthesia, and it has a complementary sequence with the 3’UTR region of TLR4. Thus, our study aims to explore whether sevoflurane directly causes neurotoxicity, the effects of miR-424 on sevoflurane induced apoptosis and inflammation, and the underlying mechanism. Methods Sevoflurane effects were identified both in mouse and in PC12 cells. Western blots and ELISA were used for protein detection, while micro (mi) RNA expression was measured with RT-qPCR. Dual luciferase reporter assays were employed to study the interaction between miR-424 and Toll-like receptor 4 (TLR4) using miR-424 mimics and TLR4 over-expression. Results Sevoflurane stimulated expression of Bax2 and Caspase-3, and increased apoptosis ratio both in vivo and vitro (P < 0.05). Inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were up-regulated by sevoflurane, while IL-10 was downregulated (P < 0.05). Sevoflurane treatment enhanced the phosphorylation of NF-κB, and up-regulated the expressions of TLR4 and MyD88 (P < 0.05), which demonstrated that sevoflurane inhibited proliferation and differentiation of neuronal cells by activating TLR4/MyD88/NF-κB signaling both in vitro and vivo. However, up-regulation of miR-424 attenuated the negative effects of sevoflurane by targeting the 3′-untranslated region (UTR) of TLR4 and inducing the degradation of mRNA (P < 0.05). Conclusions In vitro, sevoflurane induces activation of the endogenous TLR4 signaling pathway, thereby promoting apoptosis and inflammatory cytokine expression. Exogenous TLR4 acts as an agonist to stimulate TLR4 signaling, whereas miR-424 inhibits both endogenous and exogenous TLR4 signaling, thereby preserving proliferation and differentiation of neuronal cells.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3