Predicting risk of early discontinuation of exclusive breastfeeding at a Brazilian referral hospital for high-risk neonates and infants: a decision-tree analysis

Author:

Silva Maíra Domingues BernardesORCID,de Oliveira Raquel de Vasconcellos Carvalhaes,da Silveira Barroso Alves Davi,Melo Enirtes Caetano Prates

Abstract

Abstract Background Determinants at several levels may affect breastfeeding practices. Besides the known historical, socio-economic, cultural, and individual factors, other components also pose major challenges to breastfeeding. Predicting existing patterns and identifying modifiable components are important for achieving optimal results as early as possible, especially in the most vulnerable population. The goal of this study was building a tree-based analysis to determine the variables that can predict the pattern of breastfeeding at hospital discharge and at 3 and 6 months of age in a referral center for high-risk infants. Methods This prospective, longitudinal study included 1003 infants and was conducted at a high-risk public hospital in the following three phases: hospital admission, first visit after discharge, and monthly telephone interview until the sixth month of the infant’s life. Independent variables were sorted into four groups: factors related to the newborn infant, mother, health service, and breastfeeding. The outcome was breastfeeding as per the categories established by the World Health Organization (WHO). For this study, we performed an exploratory analysis at hospital discharge and at 3 and at 6 months of age in two stages, as follows: (i) determining the frequencies of baseline characteristics stratified by breastfeeding indicators in the three mentioned periods and (ii) decision-tree analysis. Results The prevalence of exclusive breastfeeding (EBF) was 65.2% at hospital discharge, 51% at 3 months, and 20.6% at 6 months. At hospital discharge and the sixth month, the length of hospital stay was the most important predictor of feeding practices, also relevant at the third month. Besides the mother’s and child’s characteristics (multiple births, maternal age, and parity), the social context, work, feeding practice during hospitalization, and hospital practices and policies on breastfeeding influenced the breastfeeding rates. Conclusions The combination algorithm of decision trees (a machine learning technique) provides a better understanding of the risk predictors of breastfeeding cessation in a setting with a large variability in expositions. Decision trees may provide a basis for recommendations aimed at this high-risk population, within the Brazilian context, in light of the hospital stay at a neonatal unit and period of continuous feeding practice.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynaecology,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3