Comparison of mechanical energy transfer during right-forward lunge between female amateur and professional badminton players

Author:

Safavi SoheilaORCID,Sheikhhoseini RahmanORCID,Abdollahi SajjadORCID

Abstract

Abstract Background Regarding their skill levels, badminton players present different movement patterns during front and right lunging. The main objective of this study was to compare the mechanical energy transfers attributable to right-forward lunges between amateur and professional badminton players to study variations in mechanical efficiency at various skill levels. Method In this cross-sectional study, twenty female badminton players were recruited (Professional group n = 10 and Amateur group n = 10). The kinematics and kinetics of the lower extremities were recorded while performing right-forward lunges using Vicon motion capture and Kistler force plates. Mechanical energy expenditures (MEE) were extracted in eccentric transfer, concentric transfer, and no-transfer phases for the hip, knee, and ankle joints. At each joint, mechanical energy compensations (MEC) were also determined. Independent samples t-tests were used to analyze data at a significance level of α = 0.05. Result Regards to mechanical energy expenditures at the initial heel contact phase, the professional players demonstrated statistically significant more ankle no-transfer (p < 0.003), less knee concentric transfer (p < 0.026), more knee eccentric transfer (p < 0.001), and less hip no-transfer (p < 0.001). At the same time, the amateur athletes showed significantly more ankle eccentric transfer (p < 0.042) at maximal knee flexion angle time point. Analyzing mechanical energy compensation coefficients showed that the professional athletes had significantly less ankle concentric transfer (p < 0.001), more knee concentric transfer (p < 0.001), more knee eccentric transfer (p < 0.001), and more hip eccentric transfer (p < 0.001) at initial contact phase. While they found to have significantly more ankle eccentric transfer (p < 0.007), less knee concentric transfer (p < 0.001), less knee eccentric transfer (p < 0.001), more hip concentric transfer (p < 0.001), and more hip eccentric transfer (p < 0.001) at maximal knee flexion angle. Conclusion it is shown that the mechanical energy efficiency of the right-forward lunge is skill-related. It seems that altered lunge landing biomechanics may increase the risk of ankle and knee injuries and muscular damages in amateur athletes. It is recommended for amateur players to follow a injury prevention training program that promotes proper lunging technique.

Publisher

Springer Science and Business Media LLC

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3