Effects of co-exposure to CS2 and noise on hearing and balance in rats: continuous versus intermittent CS2 exposures

Author:

Chalansonnet Monique,Carreres-Pons Maria,Venet Thomas,Thomas Aurélie,Merlen Lise,Boucard Stéphane,Cosnier Frédéric,Nunge Hervé,Bonfanti Elodie,Llorens Jordi,Campo Pierre,Pouyatos Benoît

Abstract

Abstract Background Carbon disulfide (CS2) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS2 exposure. Methods Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS2. Hearing function was assessed by measuring distortion product otoacoustic emissions (DPOAEs); balance was monitored based on the vestibulo-ocular reflex (VOR). Functional measurements were performed before, at the end of exposure and 4 weeks later. Histological analyses of the inner ear were also performed following exposure and after the 4-week recovery period. Results The results obtained here confirmed that CS2 exposure exerts two differential temporary effects on hearing: (1) it attenuates the noise-induced DPOAE decrease below 6 kHz probably through action on the middle ear reflex when exposure lasts 15 min per hour, and (2) continuous exposure to 250 ppm for 6 h extends the frequency range affected by noise up to 9.6 kHz (instead of 6 kHz with noise alone). With regard to balance, the VOR was reversibly disrupted at the two highest doses of CS2 (2 × 15 min/h and continuous 250 ppm). No morphological alterations to the inner ear were observed. Conclusion These results reveal that short periods of CS2 exposure can alter the sensitivity of the cochlea to noise at a dose equivalent to only 10 times the short-term occupational limit value, and intermittent exposure to CS2 (2 × 15 min/h) can alter the function of the vestibular system.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Safety Research,Toxicology

Reference46 articles.

1. Rolecki R, Tarkowski S. Draft document for carbon disulfide. Lodz: The Nofer Institute of Occupational Medicine; 2000.

2. Chang SJ, Chen CJ, Shih TS, Chou TC, Sung FC. Risk for hypertension in workers exposed to carbon disulfide in the viscose rayon industry. Am J Ind Med. 2007;50:22–7.

3. Wood RW. Neurobehavioral toxicity of carbon disulfide. Neurobehav Toxicol Teratol. 1981;3:397–405.

4. Cavalleri A, Maugeri U, Visconti E. Urinary excretion of testosterone and gonadotropins stimulating interstitial cells (ICSH) in persons exposed to carbon disulfide. Arch Mal Prof. 1970;31:23–30.

5. Llorens J. Toxic neurofilamentous axonopathies– accumulation of neurofilaments and axonal degeneration. J Intern Med. 2013;273:478–89.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3