Abstract
AbstractThe ROBoCoP project is launched within the EU COST Action CA16113 “CliniMARK” aiming to increase the number of clinically validated biomarkers and focused on chronic obstructive pulmonary disease (COPD) biomarker development and validation. ROBoCoP encompasses two consecutive studies consisting of a pilot study followed by a field study. The pilot study is a longitudinal exposure assessment and biomarker study aiming at: 1-understanding the suitability of the candidate biomarkers in surveying populations at risk such as workers exposed to COPD causing agents; 2-determining the best sampling plan with respect to the half-life of the candidate biomarkers; 3-implementing and validating the sampling procedures and analytical methods; 4-selecting the best suitable biomarkers to be measured in the field. Each study participant is surveyed every day during the 6–8 h work-shifts for two consecutive weeks. The field study has an implementation research designe that enabled us to demonstrate the applicability of the standardized protocol for biomarker measurements in occupational settings while also assessing the biomarkers’ validity. ROBoCoP will focus on particulate matter (PM) exposure measurements, exposure biomarkers and a series of effect biomarkers, including markers of lipoperoxidation: 8-isoprostane, malondialdehyd in exhaled breath condensate (EBC) and urine, potential markers of nitrosative stress: NO2−, NO3− and formate anion in EBC; markers of DNA oxidation: 8-hydroxy-2’deoxyguanosine in EBC and urine, marker of genotoxicity: micronuclei in buccal cells, and oxidative potential in exhaled air (OPEA). OPEA appears particularly promising as a clinical biomarker for detecting COPD, and will be tested independently and as part of a biomarker panel. COPD diagnosis will be performed by an experienced occupational physician according to international diagnostic standards and confirmed by a pulmonologist.This research will include approximatively 300 underground subway workers randomly selected from the personnel registry of a large Parisian transport company. Underground subways are suggested as the most PM polluted urban transport environment. We believe this occupational exposure is relevant for biomonitoring of workers and early detection of respiratory diseases.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Safety Research,Toxicology
Reference58 articles.
1. CA16113 CA. CliniMARK: ‘good biomarker practice’ to increase the number of clinically validated biomarkers. 2017. Available from: http://www.cost.eu/COST_Actions/ca/CA16113.
2. WHO. The top 10 causes of death: WHO; 2017 [Fact Sheet]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
3. Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. https://doi.org/10.1001/jama.2013.13805.
4. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health. 2015;5(2):020415. https://doi.org/10.7189/jogh.05.020415.
5. Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. https://doi.org/10.1164/rccm.200811-1757ST.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献