Author:
Kaba Dramane,Ravel Sophie,Acapovi-Yao Geneviève,Solano Philippe,Allou Koffi,Bosson-Vanga Henriette,Gardes Laetitia,N’Goran Eliezer Kouakou,Schofield Christopher John,Koné Moussa,Dujardin Jean-Pierre
Abstract
Abstract
Background
Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis has recently been reported to occur in several places within the town of Abidjan, including: (i) the Banco forest, (ii) the Abobo Adjamé University campus and (iii) the zoological park. Could these three places be treated sequentially, as separate tsetse populations, or should they be taken as one area comprising a single, panmictic population?
Methods
The amount of gene flow between these places provides strategic information for vector control. It was estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the faster and much less expensive morphometric approach in providing relevant information about population structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used both genetic (microsatellite DNA) and phenetic (geometric morphometrics) markers on the same specimens.
Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory Coast, the region of Aniassué (186 km north from Abidjan).
Results
Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p. palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two sites.
Conclusions
Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a continuous progression of interventions following for instance the "rolling carpet" principle. To compare the geometry of wing venation of tsetse flies is a cheap and fast technique. Agreement with the microsatellite approach highlights its potential for rapid assessment of population structure.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference55 articles.
1. Louis FJ: Les raisons techniques de la réémergence de la maladie du sommeil. Médecine Tropicale. 2001, 61: 425-431.
2. Schofield CJ, Kabayo JP: Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors. 2008, 1: 24. 10.1186/1756-3305-1-24.
3. Simarro PP, Jannin J, Cattand P: Eliminating Human African Trypanosomiasis. Where do we stand and what comes next?. PLOS Med. 2008, 5: 174-180. 10.1371/journal.pmed.0050174. e55
4. Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, Ruiz JA, Fèvre EM, Courtin F, Mattioli RC, Jannin JG: The Atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int J Health Geographics. 2010, 9 (57): pp18.
5. Rogers DJ: Tsetse population dynamics and distribution: a new analytical approach. J Anim Ecol. 1979, 48: 825-849. 10.2307/4197.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献