Author:
Montarsi Fabrizio,Martini Simone,Dal Pont Marco,Delai Nicola,Ferro Milone Nicola,Mazzucato Matteo,Soppelsa Fabio,Cazzola Luigi,Cazzin Stefania,Ravagnan Silvia,Ciocchetta Silvia,Russo Francesca,Capelli Gioia
Abstract
Abstract
Background
The container breeding species belonging to the genus Aedes (Meigen) are frequently recorded out of their place of origin. Invasive Aedes species are proven or potential vectors of important Arboviruses and their establishment in new areas pose a threat for human and animal health. A new species of exotic mosquito was recorded in 2011 in north-eastern Italy: Aedes (Finlaya) koreicus [Hulecoeteomyia koreica]. The aim of this study was to characterize the biology, the environment and the current distribution of this mosquito in north-eastern Italy. Morphological details useful to discriminate this species from other invasive Aedes mosquitoes are also given (see Additional files).
Methods
All possible breeding sites for larval development were monitored. In addition, ovitraps and traps for adults were used to collect eggs and adults. The mosquitoes (larvae and adults) were identified morphologically and molecularly. Environmental data and climatic variables during the period of mosquito activity (from April to October) were considered.
Results
Aedes koreicus was found in 37 municipalities (39.4%) and was detected in 40.2% of places and in 37.3% of larval habitats monitored, in a range of altitude from 173 to 1250 m.a.s.l.. Garden centres were the most common locations (66.7%), followed by streets/squares (57.1%), private gardens (46.4%) and cemeteries (21.1%) (p < 0.01). The main larval habitats were catch basins (48.5%) and artificial water containers (41.8%). As for Aedes albopictus [Stegomyia albopicta], ovitraps were attractive for adult females resulting in the higher rate of positivity (15/21; 71.4%) among breeding sites. The period of Ae. koreicus activity ranged from March 29 to October 29.
Conclusion
The species is clearly established in the area and is now overlapping with other vectors such as Ae. albopictus and colonizing areas over 800 m.a.s.l, not yet or sporadically reached by the tiger mosquito. The data collected are essential to assess the risk of colonization of other parts of Italy and Europe, as well as the risk of spreading of pathogens transmitted. These findings stress the importance of implementing entomological surveillance for early detection of invasive species, which is necessary for eradication or limitation of its further spread.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference61 articles.
1. Tatem AJ, Hay SI, Rogers DJ: Global traffic and disease vector dispersal. Proc Natl Acad Sci USA. 2006, 103: 6242-6247. 10.1073/pnas.0508391103.
2. Reiter P: Aedes albopictus and the world trade in used tires, 1988–1995: the shape of things to come. J Am Mosq Contr Assoc. 1998, 14: 83-94.
3. Lundstrom JO: Mosquito-borne viruses in Western Europe: a review. J Vect Ecol. 1999, 24: 1-39.
4. Medlock JM, Snow KR, Leach S: Possible ecology and epidemiology of medically important mosquito-borne arboviruses in Great Britain. Epidemiol Infect. 2007, 135 (3): 466-482. 10.1017/S0950268806007047.
5. Reinert JF: New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. J Am Mosq Control Assoc. 2000, 16: 175-188.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献