Loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors: Dirofilaria immitis as a study model

Author:

Aonuma Hiroka,Yoshimura Aya,Perera Namal,Shinzawa Naoaki,Bando Hironori,Oshiro Sugao,Nelson Bryce,Fukumoto Shinya,Kanuka Hirotaka

Abstract

Abstract Background Despite recent advances in our understanding of the basic biology behind transmission of zoonotic infectious diseases harbored by arthropod vectors these diseases remain threatening public health concerns. For effective control of vector and treatment, precise sampling indicating the prevalence of such diseases is essential. With an aim to develop a quick and simple method to survey zoonotic pathogen-transmitting vectors, LAMP (loop-mediated isothermal amplification) was applied to the detection of filarial parasites using a filarial parasite-transmitting experimental model that included one of the mosquito vectors, Aedes aegypti, and the canine heartworm, Dirofilaria immitis. Results LAMP reactions amplifying the cytochrome oxidase subunit I gene demonstrated high sensitivity when a single purified D. immitis microfilaria was detected. Importantly, the robustness of the LAMP reaction was revealed upon identification of an infected mosquito carrying just a single parasite, a level easily overlooked using conventional microscopic analysis. Furthermore, successful detection of D. immitis in wild-caught mosquitoes demonstrated its applicability to field surveys. Conclusion Due to its simplicity, sensitivity, and reliability, LAMP is suggested as an appropriate diagnostic method for routine diagnosis of mosquito vectors carrying filarial parasites. This method can be applied to the survey of not only canine filariasis but also lymphatic filariasis, another major public health problem. Therefore, this method offers great promise as a useful diagnostic method for filarial parasite detection in endemic filariasis regions.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3