Population dynamics of Anopheles gambiae s.l. in Bobo-Dioulasso city: bionomics, infection rate and susceptibility to insecticides
-
Published:2012-06-21
Issue:1
Volume:5
Page:
-
ISSN:1756-3305
-
Container-title:Parasites & Vectors
-
language:en
-
Short-container-title:Parasites Vectors
Author:
Dabiré Roch K,Namountougou Moussa,Sawadogo Simon P,Yaro Lassina B,Toé Hyacinthe K,Ouari Ali,Gouagna Louis-Clément,Simard Frédéric,Chandre Fabrice,Baldet Thierry,Bass Chris,Diabaté Abdoulaye
Abstract
Abstract
Background
Historical studies have indicated that An. gambiae s.s. is the predominant malaria vector species in Bobo-Dioulasso the second biggest city of Burkina Faso (West Africa). However, over the last decade, An. arabiensis appears to be replacing An. gambiae s.s. as the most prevalent malaria vector in this urban setting. To investigate this species transition in more detail the present study aims to provide an update on the malaria vector composition in Bobo-Dioulasso, and also the Plasmodium infection rates and susceptibility to insecticides of the local An. gambiae s.l. population.
Methods
An entomological survey was carried out from May to December 2008 in Dioulassoba and Kodeni (central and peripheral districts respectively), which are representative of the main ecological features of the city. Sampling consisted of the collection of larval stages from water bodies, and adults by monthly indoor residual spraying (IRS) using aerosol insecticides. Insecticide susceptibility tests were performed using the WHO filter paper protocol on adults emerged from larvae. PCR was used to determine vector species and to identify resistance mechanisms (kdr and ace-1
R
). The Plasmodium infection rate was estimated by ELISA performed on female mosquitoes collected indoors by IRS.
Results
An. arabiensis was found to be the major malaria vector in Bobo-Dioulasso, comprising 50 to 100% of the vector population. The sporozoite infection rate for An. arabiensis was higher than An. gambiae s.s. at both Dioulassoba and Kodeni. An. gambiae s.l. was resistant to DDT and cross-resistant to pyrethroids at the two sites with higher levels of resistance observed in An. gambiae s.s. than An. arabiensis. Resistance to 0.1% bendiocarb was observed in the An. gambiae s.s. S form but not the M form or in An. arabiensis. The L1014F kdr mutation was detected in the two molecular forms of An. gambiae s.s. at varying frequencies (0.45 to 0.92), but was not detected in An. arabiensis, suggesting that other mechanisms are involved in DDT resistance in this species. The ace-1
R
mutation was only detected in the S molecular form and was observed at the two sites at similar frequency (0.3).
Conclusions
Over the last ten years, An. arabiensis has become the major malaria vector in Bobo-Dioulasso city where it was formerly present only at low frequency. However, the ecological determinant that enhances the settlement of this species into urban and peri-urban areas of Bobo-Dioulasso remains to be clarified. The impact of the changing An. gambiae s.l. population in this region for vector control including resistance management strategies is discussed.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference38 articles.
1. Hunt RH, Coetzee M, Fettene M: The Anopheles gambiae complex: A new species from Ethiopia. Trans R Soc Trop Med Hyg. 1998, 92: 231-235. 10.1016/S0035-9203(98)90761-1. 2. Della Torre A, Tu Z, Petrarca V: On the distribution and genetic differentiation of Anopheles gambiae ss molecular forms. Insect Bioch Mol Biol. 2005, 35: 7055-7069. 3. Govella NJ, Chaki PP, Mpangile JM, Gerry F, Killeen GF: Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasites & Vectors. 2011, 4: 40-10.1186/1756-3305-4-40. 4. Touré YT, Petrarca V, Traoré SF, Coulibaly A, Maiga HM, Sangaré O, Sow M, Di Decco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognised taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998, 40: 477-511. 5. Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IHN, Ose K, Fotsing JM, Sagnon NF, Fontenille D, Besansky N, Simard F: Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009, 9: 16-10.1186/1472-6785-9-16.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|