Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade

Author:

Lima Luciana,Espinosa-Álvarez Oneida,Hamilton Patrick B,Neves Luis,Takata Carmen SA,Campaner Marta,Attias Márcia,de Souza Wanderley,Camargo Erney P,Teixeira Marta MG

Abstract

Abstract Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference60 articles.

1. Hoare CA: The trypanosomes of mammals: a zoological monograph. 1972, Oxford, England: Blackwell Scientific Publishing

2. Baker JR: First European record of Trypanosoma (Megatrypanum) sp. of bats. Nat New Biol. 1973, 241: 96-10.1038/newbio241096a0.

3. Marinkelle CJ: The biology of the trypanosomes of bats. Biology of the Kinetoplastida. Edited by: Lumdsen WHR, Evans DA. 1976, New York: Academic, 175-216.

4. Marinkelle CJ: Trypanosoma (Megatrypanum) megachiropterum sp. n. from the flying fox, Pteropus tonganus, Quoy, Gaimard. J Protozool. 1979, 26: 352-353.

5. Gardner RA, Molyneux DH: Schizotrypanum in British bats. Parasitology. 1988, 97: 43-50. 10.1017/S0031182000066725.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3