Author:
Gakuya Francis,Rossi Luca,Ombui Jackson,Maingi Ndichu,Muchemi Gerald,Ogara William,Soriguer Ramón C,Alasaad Samer
Abstract
Abstract
Background
Recently, there have been attempts to understand the molecular epidemiology of Sarcoptes scabiei, to evaluate the gene flow between isolates of S. scabiei from different hosts and geographic regions. However, to our knowledge, a molecular study has not been carried out to assess the molecular diversity and gene flow of Sarcoptes mite in a predator/prey ecosystem.
Results
Our study revealed an absence of gene flow between the two herbivore (Thomson's gazelle and wildebeest)- and between the two carnivore (lion and cheetah)-derived Sarcoptes populations from Masai Mara (Kenya), which is in discrepancy with the host-taxon law described for wild animals in Europe. Lion- and wildebeest-derived Sarcoptes mite populations were similar yet different from the Thomson's gazelle-derived Sarcoptes population. This could be attributed to Sarcoptes cross-infestation from wildebeest ("favourite prey") of the lion, but not from Thomson's gazelle. The cheetah-derived Sarcoptes population had different subpopulations: one is cheetah-private, one similar to the wildebeest- and lion-derived Sarcoptes populations, and another similar to the Thomson's gazelle-derived Sarcoptes mite population, where both wildebeest and Thomson's gazelle are "favourite preys" for the cheetah.
Conclusions
In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation in wild animals is prey-to-predator-wise, depending on the predator's "favourite prey". More studies on the lion and cheetah diet and behaviour could be of great help to clarify the addressed hypotheses. This study could have further ramification in the epidemiological studies and the monitoring protocols of the neglected Sarcoptes mite in predator/prey ecosystems.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference40 articles.
1. Bornstein S, Mörner T, Samuel WM: Sarcoptes scabiei and sarcoptic mange. Edited by: Samuel WM, Pybus MJ, Kocan AA. 2001, Iowa State University Press, Ames, 107-19. (Eds) Parasitic diseases of wild mammals, ISBN 0-8138-2978- X, 2PndP
2. Pence DB, Ueckermann E: Sarcoptic mange in wildlife. Rev Sci Tech. 2002, 21: 385-398.
3. Alasaad S, Walton S, Rossi L, Bornstein S, Abu-Madi M, Soriguer RC, Fitzgerald S, Zhu XQ, Zimmermann W, Ugbomoiko US, Pei KJC, Heukelbach J: Sarcoptes-World Molecular Network (Sarcoptes-WMN): integrating research on scabies. Int J Inf Dis. 2011, 15: 294-297. 10.1016/j.ijid.2011.01.012.
4. Obasanjo OO, Wu P, Conlon M, Karanfil LV, Pryor P, Moler G, Anhalt G, Chaisson RE, Perl TM: An outbreak of scabies in a teaching hospital: lessons learned. Infect Contr Hosp Epidemiol. 2001, 22: 13-18. 10.1086/501818.
5. Rossi L, Fraquelli C, Vesco U, Permunian R, Sommavilla GM, Carmignola G, Da Pozzo M, Meneguz PG: Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy. Eur J Wildl Res. 2007, 53: 131-141. 10.1007/s10344-006-0067-x.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献