The differences of bacterial communities in the tissues between healthy and diseased Yesso scallop (Patinopecten yessoensis)

Author:

Yu Zichao,Liu Chao,Fu Qiang,Lu Guangxia,Han Shuo,Wang Lingling,Song Linsheng

Abstract

Abstract The tissues of marine invertebrates are colonized by species-rich microbial communities. The dysbiosis of host’s microbiota is tightly associated with the invertebrate diseases. Yesso scallop (Patinopecten yessoensis), one of the most important maricultured scallops in northern China, has recently suffered massive summer mortalities, which causes huge production losses. The knowledge about the interactions between the Yesso scallop and its microbiota is important to develop the strategy for the disease prevention and control. In the present study, the bacterial communities in hemolymph, intestine, mantle and adductor muscle were compared between the healthy and diseased Yesso scallop based on the high-throughput sequencing of 16S rRNA gene. The results indicated obvious difference of the composition rather than the diversity of the bacterial communities between the healthy and diseased Yesso scallop. Vibrio, Francisella and Photobacterium were found to overgrow and dominate in the mantle, adductor muscle and intestine of the diseased scallops, respectively. The prediction of bacterial community metagenomes and the variations of KEGG pathways revealed that the proportions of the pathways related with neurodegenerative diseases and carbohydrate metabolism both increased significantly in the mantle and hemolymph of the diseased scallops. The abundance of the metabolism pathways including carbohydrate metabolism, lipid metabolism and amino acid metabolism decreased significantly in the intestine of diseased scallops. The results suggested that the changes of bacterial communities might be closely associated with the Yesso scallop’s disease, which was helpful for further investigation of the pathogenesis as well as prevention and control of the disease in Yesso scallop.

Funder

National Key Research and Development Program of China

Earmarked Fund for Modern Agro-industry Technology Research System

Fund for Outstanding Talents and Innovative Team of Agricultural Scientific Research

Key R&D Program of Liaoning Province

Guidance Program for Liaoning Provincial Key Research and Development Program

The Climbing Scholar and the Distinguished Professor of Liaoning

AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology

Dalian High Level Talent Innovation Support Program

Key Projects for Liaoning Provincial Natural Science Foundation Program

Liaoning Science and Technology Special Innovation Demonstration Project – Scallop Industry Technology Mission for Changhai Country

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3