Author:
Jia Xiaoqiang,Ma Yubing,Bu Rongrong,Zhao Tingting,Wu Kang
Abstract
AbstractDirected evolution has been proven as a powerful tool for developing proteins and strains with novel or enhanced features. In this study, a dual selection system was designed to tune the binding specificity of a transcription factor to a particular ligand with the ampicillin resistance gene amp (ON selection) as the positive selection marker and the levansucrase gene sacB (OFF selection) as the negative selection marker. It was applied to the lead responsive transcription factor PbrR in a whole-cell lead biosensor previously constructed in our lab (Jia et al. in Fems Microbiol Lett 365:fny157, 2018). After multiple rounds of ON–OFF selection, two mutants with higher specificity for lead were selected. Structural analysis revealed that the mutation C134 located on the metal-binding loop at the C-terminal of PbrR is likely associated with the enhanced binding to both lead and cadmium. The double mutations D64A and L68S close to the metal-binding residue C79 may lead to the reduced binding specificity toward zinc ions. This dual selection system can be applied to engineer the specificity of other transcription factors and provide fine-tuned tools to synthetic biology.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Tianjin Research Program of Application Foundation and Advanced Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献