Drug repurposing: insights into the antimicrobial effects of AKBA against MRSA

Author:

Li Yingjia,Ma Hongbing

Abstract

AbstractStaphylococcus aureus is a major threat in infectious diseases due to its varied infection types and increased resistance. S. aureus could form persister cells under certain condition and could also attach on medical apparatus to form biofilms, which exhibited extremely high resistance to antibiotics. 3-Acetyl-11-keto-beta-boswellic acid (AKBA) is a well-studied anti-tumor and antioxidant drug. This study is aimed to determine the antimicrobial effects of AKBA against S. aureus and its persister cells and biofilms. The in vitro antimicrobial susceptibility of AKBA was assessed by micro-dilution assay, disc diffusion assay and time-killing assay. Drug combination between AKBA and conventional antibiotics was detected by checkerboard assay. And the antibiofilm effects of AKBA against S. aureus were explored by crystal violet staining combined with SYTO/PI probes staining. Next, RBC lysis activity and CCK-8 kit were used to determine the cytotoxicity of AKBA. In addition, murine subcutaneous abscess model was used to assess the antimicrobial effects of AKBA in vivo. Our results revealed that AKBA was found to show effective antimicrobial activity against methicillin-resistant S. aureus (MRSA) with the minimal inhibitory concentration of 4–8 µg/mL with undetectable cytotoxicity. And no resistant mutation was induced by AKBA after 20 days of consecutive passage. Further, we found that AKBA could be synergy with gentamycin or amikacin against S. aureus and its clinical isolates. By crystal violet and SYTO9/PI staining, AKBA exhibited strong biofilm inhibitory and eradication effects at the concentration of 1 ~ 4 µg/mL. In addition, the effective antimicrobial effect was verified in vivo in a mouse model. And no detectable in vivo toxicity was found. These results indicated that AKBA has great potential to development as an alternative treatment for the refractory S. aureus infections.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3