Author:
Watanabe Masahiro,Inoue Hiroyuki,Inoue Benchaporn,Yoshimi Miho,Fujii Tatsuya,Ishikawa Kazuhiko
Abstract
Abstract
Cellulosic materials constitute most of the biomass on earth, and can be converted into biofuel or bio-based materials if fermentable sugars can be released using cellulose-related enzymes. Acremonium cellulolyticus is a mesophilic fungus which produces a high amount of cellulose-related enzymes. In the genome sequence data of A. cellulolyticus, ORFs showing homology to GH10 and GH11 xylanases were found. The xylanases of A. cellulolyticus play an important role in cellulolytic biomass degradation. Search of a draft genome sequence of A. cellulolyticus for xylanase coding regions identified seven ORFs showing homology to GH 11 xylanase genes (xylA, xylB, xylC, xylD, xylE, xylF and xylG). These genes were cloned and their enzymes were prepared with a homologous expression system under the control of a glucoamylase promoter. Six of the seven recombinant enzymes were successfully expressed, prepared, and characterized. These enzymes exhibited optimal xylanase activity at pH 4.0 – 4.5. But this time, we found that only XylC had enormously higher relative activity (2947 U•mg −1) than the other xylanases at optimum pH. This result is surprising because XylC does not retain a carbohydrate-binding module 1 (CBM-1) that is necessary to bind tightly own substrate such as xylan. In this study, we discuss the relationship between activity, pH and sequence of seven xylanases in A. cellulolyticus.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference34 articles.
1. Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23: 257–270. doi:10.1016/0168–1656(92)90074-J 10.1016/0168-1656(92)90074-J
2. Beaugrand J, Chambat G, Wong V, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B: Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 2004, 339: 2529–2540. doi:10.1016/j.carres.2004.08.012 10.1016/j.carres.2004.08.012
3. Carpita NC, Gibeaut DM: Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 1993, 3: 1–30. doi:10.1111/j.1365–313X.1993.tb00007.x 10.1111/j.1365-313X.1993.tb00007.x
4. Collins T, Gerday C, Feller G: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29: 3–23. doi:10.1016/j.femsre.2004.06.005 10.1016/j.femsre.2004.06.005
5. Coughlan MP, Hazlewood GP: Beta-1,4-D-xylan-degrading enzyme-systems - biochemistry, molecular-biology and applications. Biotechnol Appl Biochem 1993, 17: 259–289. doi:10.1111/j.1470–8744.1993.tb00244.x
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献