Detection of low-load Epstein-Barr virus in blood samples by enriched recombinase aided amplification assay

Author:

Li Jing-yi,Chen Xiao-ping,Tie Yan-qing,Sun Xiu-li,Zhang Rui-qing,He An-na,Nie Ming-zhu,Fan Guo-hao,Li Feng-yu,Tian Feng-yu,Shen Xin-xin,Feng Zhi-shan,Ma Xue-junORCID

Abstract

AbstractEpstein-Barr virus (EBV), a common human γ-herpesvirus, infects more than 90% of adults worldwide. The purpose of this study was to establish a novel EBV detection method by combining the recombinase aided amplification (RAA) assay with an initial enrichment step that utilizes magnetic beads coated with a recombinant human mannan-binding lectin (rhMBL, M1 protein). An M1 protein–protein A magnetic bead complex (M1 beads) was prepared and used to achieve separation and enrichment of EBV from blood. After nucleic acid extraction, DNA was amplified by RAA. Using 388 whole blood samples and 1 serum sample, we explored the specificity, sensitivity and applicability of the newly developed detection method and compared it with commercial quantitative real-time polymerase chain reaction (qPCR) following M1 bead enrichment, traditional qPCR and traditional RAA. After enrichment, the positivity rate of EBV was increased from 15.94% to 17.74% by RAA (P < 0.05) and from 7.20% to 15.17% by qPCR (P < 0.05). The viral loads after enrichment were increased by 1.13 to 23.19-fold (P < 0.05). Our data demonstrates that an RAA assay incorporating M1 bead enrichment is a promising tool for detecting low EBV viral loads in blood samples that will facilitate an early response to EBV infection. Graphical abstract

Funder

IVDC

the key R & D projects in zibo city

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3