Silver nanoparticles synthesized by probiotic bacteria and antibacterial role in resistant bacteria

Author:

Khalifa EmanORCID,Abdel Rafea MohamedORCID,Mustapha Nazir,Sultan RaniaORCID,Hafez ElSayedORCID

Abstract

AbstractMany dangerous bacteria have become highly resistant to traditional antibiotics, which is a huge public health concern. This study investigated the use of silver nanoparticles biosynthesized in a culture filtrate of Lactobacillus acidophilus as antimicrobials. UV–visual spectrophotometry, Fourier-transform-infrared spectroscopy, X-ray power diffraction, and scanning electron microscopy have all validated the findings. The biosynthesized nanoparticles ranged in size from 33 to 90 nm. The cytotoxicity of the nanosilver generated was then investigated using nine 200 g BW rats separated into three groups. When compared to the control group, the treated rats showed little signs of toxicity; parameters of physiological function, including alanine transaminase, aspartate aminotransferase, albumin, creatinine, and urea were significantly different in treated and non-treated animals. Moreover, the antibacterial role of the generated silver nanoparticles was examined in multi-drug resistant (MDR) pathogenic bacteria, Proteus vulgaris, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, revealing high antibacterial activity against the examined bacteria. For more demonstration of the effect of the nanosilver on transcription and gene regulation of treated and non-treated bacteria differential display droplet digital-PCR was used, and the results revealed that several genes were up- and down-regulated. Some genes were selected for DNA sequencing and according to the sequence analysis, these genes were mecA, beta-lactam, and unidentified protein genes, and these have been deposited in the GenBank Database with the following accession numbers: Staphylococcus MZ748472 and Klebsiella MZ748473. We conclude that silver nanoparticles biosynthesized by L. acidophilus are environmentally friendly and have antibacterial activities against MDR pathogenic bacteria.

Funder

Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3