In vitro antibiofilm and bacteriostatic activity of diacerein against Enterococcus faecalis

Author:

Fu Chunyan,Xu Yuxi,Zheng Hao,Ling Xinyi,Zheng Chengzhi,Tian Leihao,Gu Xiaobin,Cai Jiabei,Yang Jing,Li Yuanyuan,Wang Peiyu,Liu Yuan,Lou Yongliang,Zheng MeiqinORCID

Abstract

AbstractEnterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3