An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid

Author:

Baxi Nandita N.ORCID,Patel Shweta,Hansoti Dipeksha

Abstract

Abstract ε-Caprolactam-a toxic xenobiotic compound present in industrial polyamide waste was found to be degraded by caprolactam-degrading bacteria. Arthrobacter citreus was able to utilize up to 20 g ε-caprolactam/l as the sole source of carbon more efficiently as compared to the other Gram positive caprolactam-degrading bacteria Rhodococcus rhodochrous and Bacillus sphaericus. The cells of A. citreus remained viable in medium up to 40 g caprolactam/l. The degradation of 10 g caprolactam/l by A. citreus, when supplied as the sole source of carbon and nitrogen lead to the formation of 6-aminocaproic acid which was detected in broth and there was also an increase in the ammonium content. One of the other metabolites found to consistently accumulate in extracellular medium during the utilization of caprolactam by A. citreus was glutamic acid, though not reported in case of other caprolactam-degrading bacteria. A. citreus could metabolise caprolactam to form non toxic products such as 6-aminocaproic acid and glutamic acid which are amino acids of physiological and commercial importance. In the presence of 6-aminocaproic acid, the rate of caprolactam utilization by A. citreus was decreased but not inhibited and the viable count of cells was found to increase using both the substrates simultaneously. A. citreus was also suitable for degradation of caprolactam in presence of low phosphate as prevalent in soil, and in sterile soil without the supplementation of any other carbon or nitrogen, as well as in native non sterile soil where other microorganisms are present.

Funder

Department of Biotechnology , Govt of India

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference26 articles.

1. Baxi NN, Shah AK (2002) ε-Caprolactam-degradation by Alcaligenes faecalis for bioremediation of wastewater of a nylon-6 production plant. Biotechnol Lett 24:1177–1180

2. Bergersen FJ (1980) Measurement of nitrogen fixation by direct means. In: Bergersen FJ (ed) Methods for evaluating biological nitrogen fixation. Wiley, Chichester, pp 75–76

3. Bergmann F (1952) Colorimetric determination of amides as hydroxamic acids. Anal Chem 24:1367–1369

4. Boronin AM, Grishchenkov VG, Kulakov LA, Naumova RP (1986) Characteristics of plasmid pBS271 controlling ε-caprolactam degradation by Pseudomonas strains. Mikrobiologiya 55:231–236

5. Esikova TZ, Taran SA (2016) A novel strain Gulosibacter sp. BS4 degrading epsilon-caprolactam and nylon-6 oligomers. Microbiology 85:642–645. https://doi.org/10.1134/S0026261716050052

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3