Diversity and metagenome analysis of a hydrocarbon-degrading bacterial consortium from asphalt lakes located in Wietze, Germany

Author:

Eze Michael O.ORCID,Hose Grant C.,George Simon C.,Daniel Rolf

Abstract

AbstractThe pollution of terrestrial and aquatic environments by petroleum contaminants, especially diesel fuel, is a persistent environmental threat requiring cost-effective and environmentally sensitive remediation approaches. Bioremediation is one such approach, but is dependent on the availability of microorganisms with the necessary metabolic abilities and environmental adaptability. The aim of this study was to examine the microbial community in a petroleum contaminated site, and isolate organisms potentially able to degrade hydrocarbons. Through successive enrichment of soil microorganisms from samples of an historic petroleum contaminated site in Wietze, Germany, we isolated a bacterial consortium using diesel fuel hydrocarbons as sole carbon and energy source. The 16S rRNA gene analysis revealed the dominance of Alphaproteobacteria. We further reconstructed a total of 18 genomes from both the original soil sample and the isolated consortium. The analysis of both the metagenome of the consortium and the reconstructed metagenome-assembled genomes show that the most abundant bacterial genus in the consortium, Acidocella, possess many of the genes required for the degradation of diesel fuel aromatic hydrocarbons, which are often the most toxic component. This can explain why this genus proliferated in all the enrichment cultures. Therefore, this study reveals that the microbial consortium isolated in this study and its dominant genus, Acidocella, could potentially serve as an effective inoculum for the bioremediation of sites polluted with diesel fuel or other organic contaminants.

Funder

Australian Commonwealth Government

Deutscher Akademischer Austauschdienst

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3