Author:
Wang Meng,Sun Mengyao,Zhao Yue,Shi Yuying,Sun Shuo,Wang Shen,Zhou Yiping,Chen Lei
Abstract
Abstract
Background
As a special type of wetland, the new wetland in the coal mining subsidence area is highly sensitive to environmental changes. In recent years, more and more attention has been paid to the studies of soil microbial diversity in newly born wetlands in coal mining subsidence areas. However, there are few reports on the seasonal variation of soil microbial diversity and its relationship with soil physical and chemical properties.
Methods
In this study, 16S rRNA gene sequencing technology was used to analyze the seasonal changes of soil microbial composition and functional diversity in newly formed wetlands in coal mining subsidence areas, and to determine the seasonal changes of soil nutrient elements and physical and chemical properties in coal mining subsidence areas, so as to analyze the correlation between soil microbial diversity and soil nutrient elements and physical and chemical properties in newly formed wetlands in coal mining subsidence areas.
Results
A total of 16,050 OTUs were obtained after sample gene noise reduction. Proteobacteria, Acidobacteriota and Bacteroidota were the highest abundance in the coal mining subsidence area of Jining. The two seasons gathered separately, and temperature (Temp), total phosphorus (TP), available phosphorus (AP), total organic carbon (TOC) and dry matter content (DMC) were the key factors for the seasonal change of soil microbial community in the wetland of the coal mining subsidence area of Jining. The contents of Temp, AP and TP were significantly correlated with the abundance of soil microorganisms in summer subsidence area, while the contents of DMC and TOC were significantly correlated with the abundance of soil microorganisms in winter subsidence area.
Conclusion
Soil microbial diversity in coal mining subsidence area was correlated with the seasons. Temp, TP, AP, TOC and DMC were the key factors for the seasonal change of soil microbial community in the wetland of the coal mining subsidence area of Jining.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics