Efficient 3-hydroxypropionic acid production by Acetobacter sp. CIP 58.66 through a feeding strategy based on pH control

Author:

de Fouchécour FlorenceORCID,Lemarchand Anaïs,Spinnler Henry-ÉricORCID,Saulou-Bérion ClaireORCID

Abstract

AbstractAcetic acid bacteria (AAB) can selectively oxidize diols into their corresponding hydroxyacids. Notably, they can convert 1,3-propanediol (1,3-PDO) into 3-hydroxypropionic acid (3-HP), which is a promising building-block. Until now, 3-HP production with AAB is carried out in batch and using resting cells at high cell densities (up to 10 g L−1 of cell dry weight). This approach is likely limited by detrimental accumulation of the intermediate 3-hydroxypropanal (3-HPA). Herein, we investigate an alternative implementation that allows highly efficient 3-HP production with lower cell densities of growing cells and that prevents 3-HPA accumulation. First, growth and 3-HP production of Acetobacter sp. CIP 58.66 were characterized with 1,3-PDO or glycerol as growth substrate. The strain was then implemented in a bioreactor, during a sequential process where it was first cultivated on glycerol, then the precursor 1,3-PDO was continuously supplied at a varying rate, easily controlled by the pH control. Different pH set points were tested (5.0, 4.5, and 4.0). This approach used the natural resistance of acetic acid bacteria to acidic conditions. Surprisingly, when pH was controlled at 5.0, the performances achieved in terms of titer (69.76 g3-HP L−1), mean productivity (2.80 g3-HP L−1 h−1), and molar yield (1.02 mol3-HP mol−11,3-PDO) were comparable to results obtained with genetically improved strains at neutral pH. The present results were obtained with comparatively lower cell densities (from 0.88 to 2.08 g L−1) than previously reported. This feeding strategy could be well-suited for future scale-up, since lower cell densities imply lower process costs and energy needs.

Funder

Université Paris-Saclay

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3