Abstract
AbstractThe effect of number of cells deposited on decrease in hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii (ATCC 11,859) was examined in columns packed with glass beads in the range of 0.25 mm and 3 mm in diameter. After resting Sporosarcina pasteurii cells were introduced into the columns, a precipitation solution, which consisted of 500 mM CaCl2 and 500 mM urea, was introduced under continuous flow conditions. It was shown that hydraulic conductivity was decreased by formation of microbially induced CaCO3 precipitation from between 8.37 * 10−1 and 6.73 * 10−2 cm/s to between 3.69 * 10−1 and 1.01 * 10−2 cm/s. The lowest hydraulic conductivity was achieved in porous medium consisting of the smallest glass beads (0.25 mm in diameter) using the highest density of cell suspension (OD600 2.25). The number of the deposited cells differed depending on the glass bead size of the columns. According to the experiments, 7 * 10−9 g CaCO3 was produced by a single resting cell. The urease activity, which led CaCO3 precipitation, depended on presence of high number of cells deposited in the column because the nutrients were not included in the precipitation solution and consequently, the amount of CaCO3 precipitated was proportional with the cell number in the column. A mathematical model was also developed to investigate the experimental results, and statistical analysis was also performed.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献