Effect of cell density on decrease in hydraulic conductivity by microbial calcite precipitation

Author:

Eryürük KağanORCID

Abstract

AbstractThe effect of number of cells deposited on decrease in hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii (ATCC 11,859) was examined in columns packed with glass beads in the range of 0.25 mm and 3 mm in diameter. After resting Sporosarcina pasteurii cells were introduced into the columns, a precipitation solution, which consisted of 500 mM CaCl2 and 500 mM urea, was introduced under continuous flow conditions. It was shown that hydraulic conductivity was decreased by formation of microbially induced CaCO3 precipitation from between 8.37 * 10−1 and 6.73 * 10−2 cm/s to between 3.69 * 10−1 and 1.01 * 10−2 cm/s. The lowest hydraulic conductivity was achieved in porous medium consisting of the smallest glass beads (0.25 mm in diameter) using the highest density of cell suspension (OD600 2.25). The number of the deposited cells differed depending on the glass bead size of the columns. According to the experiments, 7 * 10−9 g CaCO3 was produced by a single resting cell. The urease activity, which led CaCO3 precipitation, depended on presence of high number of cells deposited in the column because the nutrients were not included in the precipitation solution and consequently, the amount of CaCO3 precipitated was proportional with the cell number in the column. A mathematical model was also developed to investigate the experimental results, and statistical analysis was also performed.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3