Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality

Author:

Nam Jun HaengORCID,Thibodeau AlyssaORCID,Qian Yanping L.ORCID,Qian Michael C.ORCID,Park Si HongORCID

Abstract

AbstractThe natural soil environment is considered one of the most diverse habitats containing numerous bacteria, fungi, and larger organisms such as nematodes, insects, or rodents. Rhizosphere bacteria play vital roles in plant nutrition and the growth promotion of their host plant. The aim of this study was to evaluate the effects of three plant growth-promoting rhizobacteria (PGPR), Bacillus subtilis, Bacillus amyloliquefaciens, and Pseudomonas monteilii for their potential role as a biofertilizer. The effect of the PGPR was examined at a commercial strawberry farm in Dayton, Oregon. The PGPR were applied to the soil of the strawberry (Fragaria × ananassa cultivar Hood) plants in two different concentrations of PGPR, T1 (0.24% PGPR) and T2 (0.48% PGPR), and C (no PGPR). A total of 450 samples from August 2020 to May 2021 were collected, and microbiome sequencing based on the V4 region of the 16S rRNA gene was conducted. The strawberry quality was measured by sensory evaluation, total acidity (TA), total soluble solids (TSS), color (lightness and chroma), and volatile compounds. Application of the PGPR significantly increased the populations of Bacillus and Pseudomonas and promoted the growth of nitrogen-fixing bacteria. The TSS and color evaluation showed that the PGPR presumptively behaved as a ripening enhancer. The PGPR contributed to the production of fruit-related volatile compounds, while the sensory evaluation did not show significant differences among the three groups. The major finding of this study suggests that the consortium of the three PGPR have a potential role as a biofertilizer by supporting the growth of other microorganisms (nitrogen-fixing bacteria) as part of a synergetic effect and strawberry quality such as sweetness and volatile compounds.

Funder

Oregon Department of Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3