Changes in physicochemical properties and microbial community succession during leaf stacking fermentation

Author:

Zhang Guanghai,Zhao Lu,Li Wei,Yao Heng,Lu Canhua,Zhao Gaokun,Wu Yuping,Li Yongping,Kong GuanghuiORCID

Abstract

AbstractLeaf stacking fermentation involves enzymatic actions of many microorganisms and is an efficient and environmentally benign process for degrading macromolecular organic compounds. We investigated the dynamics of metabolite profiles, bacterial and fungal communities and their interactions during fermentation using cigar leaves from three geographic regions. The results showed that the contents of total sugar, reducing sugar, starch, cellulose, lignin, pectin, polyphenol and protein in cigar tobacco leaves was significantly decreased during fermentation. Notably, the furfural, neophytadiene, pyridine, benzyl alcohol, geranylacetone, 3-hydroxy-2-butanone, N-hexanal, 3-Methyl-1-butanol and 2,3-pentanedione were important features volatile aroma compounds during fermentation. The α-diversity of fungi and bacteria initially increased and then decreased during fermentation. An analysis of variance showed that microbial diversity was influenced by fermentation stages and growing locations, in which the all stages had greater impacts on α- and β-diversity than all regions. Microbiome profiling had identified several core bacteria including Sphingomonas, Bacillus, Staphylococcus, Pseudomonas, Ralstonia, Massilia and Fibrobacter. Fungal biomarkers included Aspergillus, Penicillium, Fusarium, Cladosporium and Trichomonascus. Interestingly, the molecular ecological networks showed that the core taxa had significant correlations with metabolic enzymes and physicochemical properties; bacteria and fungi jointly participated in the carbohydrate and nitrogen compound degrading and volatile aroma compound chemosynthesis processes during fermentation. These studies provide insights into the coupling of material conversion and microbial community succession during leaf fermentation. Graphical abstract

Funder

China Tobacco Monopoly Bureau Grants

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3