Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C30-carotenoids

Author:

Filluelo Oriana,Ferrando Jordi,Picart PereORCID

Abstract

AbstractCommercial carotenoid production is dominated by chemical synthesis and plant extraction, both of which are unsustainable and can be detrimental to the environment. A promising alternative for the mass production of carotenoids from both an ecological and commercial perspective is microbial synthesis. To date, C30 carotenoid production in Bacillus subtilis has been achieved using plasmid systems for the overexpression of biosynthetic enzymes. In the present study, we employed a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system to develop an efficient, safe, and stable C30 carotenoid-producing B. subtilis strain, devoid of plasmids and antibiotic selection markers. To this end, the expression levels of crtM (dehydrosqualene synthase) and crtN (dehydrosqualene desaturase) genes from Staphylococcus aureus were upregulated by the insertion of three gene copies into the chromosome of B. subtilis. Subsequently, the supply of the C30 carotenoid precursor farnesyl diphosphate (FPP), which is the substrate for CrtMN enzymes, was enhanced by expressing chromosomally integrated Bacillus megaterium-derived farnesyl diphosphate synthase (FPPS), a key enzyme in the FPP pathway, and abolishing the expression of farnesyl diphosphate phosphatase (YisP), an enzyme responsible for the undesired conversion of FPP to farnesol. The consecutive combination of these features resulted in a stepwise increased production of C30 carotenoids. For the first time, a B. subtilis strain that can endogenously produce C30 carotenoids has been constructed, which we anticipate will serve as a chassis for further metabolic engineering and fermentation optimization aimed at developing a commercial scale bioproduction process.

Funder

Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CRISPR Tools in Bacterial Whole-Cell Biocatalysis;ACS Sustainable Chemistry & Engineering;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3