Abstract
AbstractYarrowia lipolytica is an oleaginous yeast species with the ability to grow on a number of substrates types, especially industrial wastes. This paper concerns the statistical optimization of fermentation parameters and media to ensure consistent and improved Y. lipolytica protein production. A strain of Y. lipolytica A-101 was observed to be proficient in producing single cell protein, amino acids, and vitamin B12 while utilizing biofuel waste instead of a complete YPD medium for yeast growth. A fractional fractal design experiment was then applied, and the two fermentation parameters of temperature and pH were recognized to have a significant effect on the protein and amino acid production. Subsequently, the response surface methodology with a three-level complete factorial design was employed to optimize these influential parameters. Therefore, five different measuring systems were utilized to construct a quadratic model and a second-order polynomial equation. Optimal levels of parameters were then obtained by analysis of the model and the numerical optimization method. When the Y. lipolytica A-101 was cultivated at optimized pH (5.0) using biofuel waste as a medium, the protein concentration was increased to 8.28—a 44% enhancement as compared to the original (3.65). This study has thus demonstrated a beneficial way to cultivate Y. lipolytica A-101 on biofuel waste for enhanced production of single cell protein and amino acids for use in human diet and in animal feed.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献