Abstract
AbstractThis study aims to produce, characterize, and assess the antimicrobial activity and cytotoxicity of polymer blends based on chitosan (CT) and fish collagen (COL) produced by different precipitation methods. Polymer blends were obtained in alkaline (NaOH), saline (NaCl), and alkaline/saline (NaOH/NaCl) solutions with different CT:COL concentration ratios (20:80, 50:50, and 80:20). The polymer blends were characterized by various physicochemical methods and subsequently evaluated in terms of their in vitro antimicrobial and cytotoxicity activity. In this study, the degree of chitosan deacetylation was 82%. The total hydroxyproline and collagen content in the fish matrix was 47.56 mg. g−1 and 394.75 mg. g−1, respectively. The highest yield was 44% and was obtained for a CT:COL (80:20) blend prepared by precipitation in NaOH. High concentrations of hydroxyproline and collagen in the blends were observed when NaOH precipitation was used. Microbiological analysis revealed that the strains used in this work were sensitive to the biomaterial; this sensitivity was dose-dependent and increased with increasing chitosan concentration in the products. The biocompatibility test showed that the blends did not reduce the viability of fibroblast cells after 48 h of culture. An analysis of the microbiological activity of the all-polymer blends showed a decrease in the values of minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) for S. aureus and P. aeruginosa. The blends showed biocompatibility with NIH-3T3 murine fibroblast cells and demonstrated their potential for use in biomedical applications such as wound healing, implants, and scaffolds.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference43 articles.
1. Akhavan-Kharazian N, Izadi-Vasafi H (2019) Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 133:881–891. https://doi.org/10.1016/j.ijbiomac.2019.04.159
2. Cervera MF, Heinämäki J, Krogars K, Jörgensen AC, Karjalainen M, Colarte AI, Yliruusi J (2004) Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols. AAPS PharmSciTech 1:109–114. https://doi.org/10.1208/pt050115
3. Chen Z, Mo X, He C, Wang H (2008) Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydr Polym 3:410–418. https://doi.org/10.1016/j.carbpol.2007.09.018
4. CLSI (2011) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 21st Informational Supplement. CLSI Document M100-S21. Clinical and Laboratory Standards Institute, Wayne
5. CLSI (2017) Performance standards for antimicrobial susceptibility testing. m100-s27th. Clinical and Laboratory Standards Institute, Wayne, PA
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献