Abstract
AbstractDengue is one of the fairly prevalent viral infections at the world level transmitted through mosquitoes (Aedes aegypti and Aedes albopictus). Due to various environmental factors, dengue cases surged rapidly at the global level in recent decades, with 193245 cases in 2021 and an increment of 110473 cases in 2022. There is no antidote available against dengue and other flaviviruses. In the absence of a dengue vaccine or specific antiviral, medicinal plants or their products can be the only choice for its effective management. Ocimum sanctum is known as ‘‘The Incomparable One,’’ ‘‘Mother Medicine of Nature’’ and ‘‘Queen of Herbs’’ in Ayurveda, and is considered an "elixir of life" supreme in both healthcare and spiritual terms. In present study eugenol was isolated in O.sanctum. Eugenol (1-hydroxy-2-methoxy-4-allylbenzene) has been substantially responsible for its therapeutic potential. High-performance thin-layer chromatography, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy were applied to identify the compound. The Rf value of isolated compound was same in the chromatogram (0.69 + 0.05) with compare to standard. The safe dose of plant and eugenol were found as < 31.25 μg/ml and < 15.62 µg/ml. The anti-dengue activity was assessed in C6/36 cell lines, their effect was determined through Quantitative PCR. The NMR of the isolated eugenol showed similar properties as the commercial marker compound. The eugenol and SFE extract of O. sanctum showed the inhibition of 99.28% and completely against Dengue-2, respectively. Docking study exposed that the interaction of eugenol with NS1 and NS5 dengue protein showed the binding energy as − 5.33 and − 5.75 kcal/mol, respectively. The eugenol from the O. sanctum plant has the potential to be a good source of future treatment medications for dengue illness, as well as a valuable tool in its successful management
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献