Eugenol isolated from supercritical fluid extract of Ocimum sanctum: a potent inhibitor of DENV-2

Author:

Kaushik Sulochana,Kaushik Samander,Dar Lalit,Yadav Jaya ParkashORCID

Abstract

AbstractDengue is one of the fairly prevalent viral infections at the world level transmitted through mosquitoes (Aedes aegypti and Aedes albopictus). Due to various environmental factors, dengue cases surged rapidly at the global level in recent decades, with 193245 cases in 2021 and an increment of 110473 cases in 2022. There is no antidote available against dengue and other flaviviruses. In the absence of a dengue vaccine or specific antiviral, medicinal plants or their products can be the only choice for its effective management. Ocimum sanctum is known as ‘‘The Incomparable One,’’ ‘‘Mother Medicine of Nature’’ and ‘‘Queen of Herbs’’ in Ayurveda, and is considered an "elixir of life" supreme in both healthcare and spiritual terms. In present study eugenol was isolated in O.sanctum. Eugenol (1-hydroxy-2-methoxy-4-allylbenzene) has been substantially responsible for its therapeutic potential. High-performance thin-layer chromatography, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy were applied to identify the compound. The Rf value of isolated compound was same in the chromatogram (0.69 + 0.05) with compare to standard. The safe dose of plant and eugenol were found as < 31.25 μg/ml and < 15.62 µg/ml. The anti-dengue activity was assessed in C6/36 cell lines, their effect was determined through Quantitative PCR. The NMR of the isolated eugenol showed similar properties as the commercial marker compound. The eugenol and SFE extract of O. sanctum showed the inhibition of 99.28% and completely against Dengue-2, respectively. Docking study exposed that the interaction of eugenol with NS1 and NS5 dengue protein showed the binding energy as − 5.33 and − 5.75 kcal/mol, respectively. The eugenol from the O. sanctum plant has the potential to be a good source of future treatment medications for dengue illness, as well as a valuable tool in its successful management

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3