Author:
Cui Jing,Zhao Ji,Wang Zheng,Cao Weiwei,Zhang Shaohua,Liu Jumei,Bao Zhihua
Abstract
AbstractRoot-associated aerobic methanotrophs play an important role in regulating methane emissions from the wetlands. However, the influences of the plant genotype on root-associated methanotrophic structures, especially on active flora, remain poorly understood. Transcription of the pmoA gene, encoding particulate methane monooxygenase in methanotrophs, was analyzed by reverse transcription PCR (RT-PCR) of mRNA isolated from root samples of three emergent macrophytes, including Phragmites australis, Typha angustifolia, and Schoenoplectus triqueter (syn. Scirpus triqueter L.) from a eutrophic wetland. High-throughput sequencing of pmoA based on DNA and cDNA was used to analyze the methanotrophic community. Sequencing of cDNA pmoA amplicons confirmed that the structure of active methanotrophic was not always consistent with DNA. A type I methanotroph, Methylomonas, was the most active group in P. australis, whereas Methylocystis, a type II methanotroph, was the dominant group in S. triqueter. In T. angustifolia, these two types of methanotroph existed in similar proportions. However, at the DNA level, Methylomonas was predominant in the roots of all three plants. In addition, vegetation type could have a profound impact on root-associated methanotrophic community at both DNA and cDNA levels. These results indicate that members of the genera Methylomonas (type I) and Methylocystis (type II) can significantly contribute to aerobic methane oxidation in a eutrophic wetland.
Funder
National Natural Science Foundation of China
Science and Technology Major Project on Lakes of Inner Mongolia
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献