A novel recombinant chimeric bio-adhesive protein consisting of mussel foot protein 3, 5, gas vesicle protein A, and CsgA curli protein expressed in Pichia pastoris

Author:

Bolghari Nazanin,Shahsavarani HoseinORCID,Anvari Masoumeh,Habibollahi Hadi

Abstract

AbstractDespite various efforts to produce potent recombinant bio-adhesive proteins for medical purposes, efficient production of a safe and feasible bio-glue is not yet a commercial reality due to the weak properties or low expression levels. Here, a feasible expression system has been developed to produce strong recombinant fusion bioinspired protein using mussel foot protein 3 and 5 (Mfps) along with gas vesicle protein A (GvpA) of Anabaena flos-aquae, and a curli protein CsgA from E. coli, expressed under the control of alcohol oxidase (AOX1) promoter for high-level production in yeast P. pastoris using pPICZα vector. Purified chimeric proteins were first evaluated using western blotting, and their remaining dihydroxyphenylalanine (DOPA) was measured in the modified proteins by NBT assay. We further elucidated the mechanistic properties of obtained adhesive protein assembly in various pH levels based on its different subunits using atomic force microscopy (AFM) when adsorbed onto the mica surface. We found that both combinational structural features of subunits and post-translational changes during expression in yeast host have led to potent adherence due to higher DOPA residues specially in acidic condition and tetrad complex which is higher than that of earlier reports in prokaryotic systems. We believe that our obtained chimeric protein resulted from the fusion of GvpA and CsgA proteins with DOPA-containing Mfp proteins, expressed in the methylotrophic yeast, P. pastoris, not only presents a candidate for future biomedical applications but also provides novel biological clues used for high-performance bioinspired biomaterial designation. Graphical Abstract

Funder

iran national science foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3