Author:
Shao Jiping,Zeng Debin,Tian Shuhong,Liu Gezhi,Fu Jian
Abstract
AbstractDrugs targeting the fusion process of viral entry into host cells have been approved for clinical use in the treatment of AIDS. There remains a great need to improve the use of existing drugs for HIV therapy. Berberine is traditionally used to treat diarrhea, bacillary dysentery, and gastroenteritis in clinics, here our research shows that berberine is effective in inhibiting HIV-1 entry. Native polyacrylamide gel electrophoresis studies reveal that berberine can directly bind to both N36 and C34 to form a novel N36-berberine-C34 complex and effectively block the six-helix bundle formation between the N-terminal heptad repeat peptide N36 and the C-terminal heptad repeat peptide C34. Circular dichroism experiments show that binding of berberine produces conformational changes that damages the secondary structures of 6-HB. Computer-aided molecular docking studies suggest a hydrogen bond with T-639 and two polar bonds with Q-563 and T-639 are established, involving the oxygen atom and the C=O group of the indole ring. Berberine completely inhibits six HIV-1 clade B isolates and exhibits antiviral activities in a concentration-dependent manner with IC50 values varying from 5.5 to 10.25 µg/ml. This compound-peptide interaction may represent a mechanism of action of antiviral activities of berberine. As a summary, these studies successfully identify compound berberine as a potential candidate drug for HIV-1 treatment. As a summary, antiviral activity of berberine in combination with its use in clinical practice, this medicine can be used as a potential clinically anti-HIV drug.
Funder
Key Research and Development Project of Hainan Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献